Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas

  • A. S. ParvanEmail author
Regular Article - Theoretical Physics


In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q − 1 is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated.


Thermodynamic Limit Thermodynamic Quantity Canonical Ensemble Thermodynamic Potential Entropy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Cleymans, AIP Conf. Proc. 1625, 31 (2014).CrossRefADSGoogle Scholar
  2. 2.
    T.S. Biró, Eur. Phys. J. A 40, 255 (2009).CrossRefADSGoogle Scholar
  3. 3.
    G.G. Barnaföldi, K. Ürmössy, T.S. Biró, J. Phys.: Conf. Ser. 270, 012008 (2011).ADSGoogle Scholar
  4. 4.
    A. Esquivel, A. Lazarian, Astrophys. J. 710, 125 (2010).CrossRefADSGoogle Scholar
  5. 5.
    A.S. Betzler, E.P. Borges, Astron. Astrophys. 539, A158 (2012).CrossRefADSGoogle Scholar
  6. 6.
    ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1655 (2011).CrossRefADSGoogle Scholar
  7. 7.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 693, 53 (2010).CrossRefADSGoogle Scholar
  8. 8.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. D 82, 052001 (2010).CrossRefADSGoogle Scholar
  9. 9.
    ATLAS Collaboration (G. Aad et al.), New J. Phys. 13, 053033 (2011).CrossRefADSGoogle Scholar
  10. 10.
    CMS Collaboration (V. Khachatryan et al.), Phys. Rev. Lett. 105, 022002 (2010).CrossRefADSGoogle Scholar
  11. 11.
    M. Rybczyński, Z. Włodarczyk, Eur. Phys. J. C 74, 2785 (2014).CrossRefADSGoogle Scholar
  12. 12.
    J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013).CrossRefADSGoogle Scholar
  13. 13.
    A.S. Parvan, PoS Baldin-ISHEPP-XXII, 077 (2014).Google Scholar
  14. 14.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988).MathSciNetCrossRefADSzbMATHGoogle Scholar
  15. 15.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998).CrossRefADSGoogle Scholar
  16. 16.
    S. Abe, S. Martínez, F. Pennini, A. Plastino, Phys. Lett. A 281, 126 (2001).CrossRefADSzbMATHGoogle Scholar
  17. 17.
    T.S. Biró, P. Ván, Phys. Rev. E 83, 061147 (2011).CrossRefADSGoogle Scholar
  18. 18.
    T.S. Biró, Is there a Temperature? Conceptual Challenges at High Energy, Acceleration and Complexity (Springer, New York, Dordrecht, Heidelberg, London, 2011).Google Scholar
  19. 19.
    T.S. Biró, P. Ván, G.G. Barnaföldi, K. Ürmössy, Entropy 16, 6497 (2014).CrossRefADSGoogle Scholar
  20. 20.
    Q.A. Wang, Eur. Phys. J. B 26, 357 (2002).ADSGoogle Scholar
  21. 21.
    S. Abe, Phys. Lett. A 263, 424 (1999) 267.MathSciNetCrossRefADSzbMATHGoogle Scholar
  22. 22.
    A.S. Parvan, T.S. Biró, Phys. Lett. A 340, 375 (2005).MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    A.S. Parvan, Phys. Lett. A 350, 331 (2006).MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    A.S. Parvan, Phys. Lett. A 360, 26 (2006).MathSciNetCrossRefADSzbMATHGoogle Scholar
  25. 25.
    O.J.E. Maroney, Phys. Rev. E 80, 061141 (2009).MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    A. Plastino, A.R. Plastino, Phys. Lett. A 226, 257 (1997).MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. 27.
    G. Kaniadakis, Phys. Rev. E 72, 036108 (2005).MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    E.M.F. Curado, C. Tsallis, J. Phys. A 24, L69 (1991) 24.MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    I. Prigogine, D. Kondepudi, Modern Thermodynamics: From Heat Engines to Dissipative Structures (John Wiley & Sons, Chichester, 1998).Google Scholar
  30. 30.
    I.A. Kvasnikov, Thermodynamics and Statistical Mechanics: The Equilibrium Theory (Moscow State University Publishing, Moscow, 1991).Google Scholar
  31. 31.
    R. Botet, M. Płoszajczak, J.A. González, Phys. Rev. E 65, 015103(R) (2002).CrossRefADSGoogle Scholar
  32. 32.
    R. Botet, M. Płoszajczak, K.K. Gudima, A.S. Parvan, V.D. Toneev, Physica A 344, 403 (2004).CrossRefADSGoogle Scholar
  33. 33.
    T.S. Biró, K. Ürmössy, Z. Schram, J. Phys. G: Nucl. Part. Phys. 37, 094027 (2010).CrossRefADSGoogle Scholar
  34. 34.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006).CrossRefADSGoogle Scholar
  35. 35.
    F. Becattini, M. Gazdzicki, A. Keränen, J. Manninen, R. Stock, Phys. Rev. C 69, 024905 (2004).CrossRefADSGoogle Scholar
  36. 36.
    P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004).CrossRefADSGoogle Scholar
  37. 37.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009).CrossRefADSGoogle Scholar
  38. 38.
    J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012).CrossRefADSGoogle Scholar
  39. 39.
    A. Deppman, J. Phys. G: Nucl. Part. Phys. 41, 055108 (2014).CrossRefADSGoogle Scholar
  40. 40.
    A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343, 71 (2005).CrossRefADSzbMATHGoogle Scholar
  41. 41.
    J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581 (2010).CrossRefADSzbMATHGoogle Scholar
  42. 42.
    V.I. Arnold, Mathematical methods of classical mechanics (Springer-Verlag, New York, 1989).Google Scholar
  43. 43.
    M.L. Krasnov, G.I. Makarenko, A.I. Kiseliov, Calculus of Variations: Problems and Exercises with Detailed Solutions (URSS Publisher, Moscow, 2002).Google Scholar
  44. 44.
    E.T. Jaynes, Statistical Physics, edited by W.K. Ford (Benjamin, New York, 1963).Google Scholar
  45. 45.
    T. Yamano, Eur. Phys. J. B 18, 103 (2000).CrossRefADSGoogle Scholar
  46. 46.
    E. Vives, A. Planes, Phys. Rev. Lett. 88, 020601 (2002).MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    M. Abramowitz, I. Stegun, Handbook of Mathematics Functions, Nat. Bur. Stand. Appl. Math. Ser., Vol. 55 (U.S. Govt. Printing Office, Washington, DC, 1965).Google Scholar
  48. 48.
    J. Woods Halley, Statistical Mechanics: From First Principles to Macroscopic Phenomena (Cambridge University Press, 2006).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussian Federation
  2. 2.Department of Theoretical PhysicsHoria Hulubei National Institute of Physics and Nuclear EngineeringBucharestRomania
  3. 3.Institute of Applied PhysicsMoldova Academy of SciencesChisinauRepublic of Moldova

Personalised recommendations