Advertisement

High-statistics study of the reaction γp → p2π0

  • The CBELSA/TAPS Collaboration
  • V. Sokhoyan
  • E. Gutz
  • V. Crede
  • H. van Pee
  • A. V. Anisovich
  • J. C. S. Bacelar
  • B. Bantes
  • O. Bartholomy
  • D. Bayadilov
  • R. Beck
  • Y. A. Beloglazov
  • R. Castelijns
  • H. Dutz
  • D. Elsner
  • R. Ewald
  • F. Frommberger
  • M. Fuchs
  • Ch. Funke
  • R. Gregor
  • A. B. Gridnev
  • W. Hillert
  • Ph. Hoffmeister
  • I. Horn
  • I. Jaegle
  • J. Junkersfeld
  • H. Kalinowsky
  • S. Kammer
  • V. Kleber
  • Frank Klein
  • Friedrich Klein
  • E. Klempt
  • M. Kotulla
  • B. Krusche
  • M. Lang
  • H. Löhner
  • I. V. Lopatin
  • S. Lugert
  • T. Mertens
  • J. G. Messchendorp
  • V. Metag
  • B. Metsch
  • M. Nanova
  • V. A. Nikonov
  • D. Novinsky
  • R. Novotny
  • M. Ostrick
  • L. Pant
  • M. Pfeiffer
  • D. Piontek
  • A. Roy
  • A. V. Sarantsev
  • Ch. Schmidt
  • H. Schmieden
  • T. Seifen
  • S. Shende
  • A. Süle
  • V. V. Sumachev
  • T. Szczepanek
  • A. Thiel
  • U. Thoma
  • D. Trnka
  • R. Varma
  • D. Walther
  • Ch. Wendel
  • A. Wilson
Regular Article - Experimental Physics

Abstract

The photoproduction of 2π 0 mesons off protons was studied with the Crystal Barrel/TAPS experiment at the electron accelerator ELSA in Bonn. The energy of photons produced in a radiator was tagged in the energy range from 600 MeV to 2.5 GeV. Differential and total cross sections and 0 π 0 Dalitz plots are presented. Part of the data was taken with a diamond radiator producing linearly polarized photons, and beam asymmetries were derived. Properties of nucleon and Δ resonances contributing to the 0 π 0 final state were determined within the Bonn-Gatchina (BnGa) partial-wave analysis. The data presented here allow us to determine branching ratios of nucleon and Δ resonances for their decays into 0 π 0 via several intermediate states. Most prominent are decays proceeding via Δ(1232)π, N(1440)1/2+ π, N(1520)3/2 π, N(1680)5/2+ π, but also pf 0(500), pf 0(980), and pf 2(1270) contribute to the reaction.

Keywords

Wave Function Total Cross Section Orbital Angular Momentum Dalitz Plot Yellow Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.M. Manley, R.A. Arndt, Y. Goradia, V.L. Teplitz, Phys. Rev. D 30, 904 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    J. Vandermeulen, Z. Phys. A 342, 329 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    R.G. Edwards et al., Phys. Rev. D 84, 074508 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    S. Capstick, Phys. Rev. D 46, 2864 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    W. Hillert, Eur. Phys. J. A 28S1, 139 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014).CrossRefGoogle Scholar
  10. 10.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 49, 158 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    CBELSA/TAPS Collaboration (A. Thiel et al.), Phys. Rev. Lett. 114, 091803 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    CBELSA/TAPS Collaboration (V. Sokhoyan et al.), Phys. Lett. B 746, 127 (2015).CrossRefGoogle Scholar
  14. 14.
    Cambridge Bubble Chamber Group, Phys. Rev. 169, 1081 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    R. Erbe et al., Phys. Rev. 188, 2060 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    J. Ballam et al., Phys. Rev. D 5, 15 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    J. Ballam et al., Phys. Rev. D 5, 545 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    M. Davier et al., Nucl. Phys. B 58, 31 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    G. Gialanella et al., Nuovo Cimento A 63, 892 (1969).ADSCrossRefGoogle Scholar
  20. 20.
    F. Carbonara et al., Nuovo Cimento A 36, 219 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    A. Braghieri et al., Phys. Lett. B 363, 46 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    M. Kotulla et al., Phys. Lett. B 578, 63 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    F. Härter et al., Phys. Lett. B 401, 229 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    M. Wolf et al., Eur. Phys. J. A 9, 5 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    W. Langgartner et al., Phys. Rev. Lett. 87, 052001 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    J. Ahrens et al., Phys. Lett. B 624, 173 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    J. Ahrens et al., Eur. Phys. J. A 34, 11 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    Crystal Ball at MAMI and TAPS and A2 Collaborations (D. Krambrich et al.), Phys. Rev. Lett. 103, 052002 (2009).CrossRefGoogle Scholar
  29. 29.
    Crystal Ball at MAMI, TAPS and A2 Collaborations (V.L. Kashevarov et al.), Phys. Rev. C 85, 064610 (2012).CrossRefGoogle Scholar
  30. 30.
    F. Zehr et al., Eur. Phys. J. A 48, 98 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    M. Oberle et al., Phys. Lett. B 721, 237 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Assafiri et al., Phys. Rev. Lett. 90, 222001 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    J. Ajaka et al., Phys. Lett. B 651, 108 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    C. Wu et al., Eur. Phys. J. A 23, 317 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    CBELSA Collaboration (U. Thoma et al.), Phys. Lett. B 659, 87 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Sarantsev et al., Phys. Lett. B 659, 94 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    K. Hirose et al., Phys. Lett. B 674, 17 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    CLAS Collaboration (V.I. Mokeev et al.), Phys. Rev. C 86, 035203 (2012).Google Scholar
  39. 39.
    L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. ST 198, 141 (2011).CrossRefGoogle Scholar
  40. 40.
    I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    S. Strauch et al., Phys. Rev. Lett. 95, 162003 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    D. Lüke, P. Söding, Springer Tracts in Modern Physics, Vol. 59 (Springer, Berlin, Heidelberg, 1971) p. 39.Google Scholar
  43. 43.
    J.A. Gomez Tejedor, F. Cano, E. Oset, Phys. Lett. B 379, 39 (1996).ADSCrossRefGoogle Scholar
  44. 44.
    J.A. Gomez Tejedor, E. Oset, Nucl. Phys. A 600, 413 (1996).ADSCrossRefGoogle Scholar
  45. 45.
    M. Hirata, K. Ochi, T. Takaki, Effect of ρ channel in the γN → ππ reactions, HUPD-9722, arXiv:nucl-th/9711031.
  46. 46.
    J.C. Nacher, E. Oset, M.J. Vicente, L. Roca, Nucl. Phys. A 695, 295 (2001).ADSCrossRefGoogle Scholar
  47. 47.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055212 (2002).ADSCrossRefGoogle Scholar
  48. 48.
    M. Hirata, N. Katagiri, T. Takaki, Phys. Rev. C 67, 034601 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    A. Fix, H. Arenhövel, Eur. Phys. J. A 25, 115 (2005).CrossRefGoogle Scholar
  50. 50.
    A. Fix, H. Arenhövel, Phys. Rev. C 85, 035502 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    A. Anisovich, E. Klempt, A. Sarantsev, U. Thoma, Eur. Phys. J. A 24, 111 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Phys. Rev. C 86, 015202 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    Crystal Barrel Collaboration (E. Aker et al.), Nucl. Instrum. Methods A 321, 69 (1992).ADSCrossRefGoogle Scholar
  54. 54.
    TAPS Collaboration (R. Novotny), IEEE Trans. Nucl. Sci. 38, 379 (1991).CrossRefGoogle Scholar
  55. 55.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994).ADSCrossRefGoogle Scholar
  56. 56.
    G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005).ADSCrossRefGoogle Scholar
  57. 57.
    CBELSA/TAPS Collaboration (D. Elsner et al.), Eur. Phys. J. A 39, 373 (2009).CrossRefGoogle Scholar
  58. 58.
    F.A. Natter, P. Grabmayr, T. Hehla, R.O. Owens, S. Wunderlich, Nucl. Instrum. Methods B 211, 465 (2003).ADSCrossRefGoogle Scholar
  59. 59.
    CBELSA Collaboration (H. van Pee et al.), Eur. Phys. J. A 31, 61 (2007).CrossRefGoogle Scholar
  60. 60.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014).CrossRefGoogle Scholar
  61. 61.
    A. Abashian, N.E. Booth, K.M. Crowe, Phys. Rev. Lett. 5, 258 (1960).ADSCrossRefGoogle Scholar
  62. 62.
    WASA-at-COSY Collaboration (P. Adlarson et al.), Phys. Rev. Lett. 106, 242302 (2011).CrossRefGoogle Scholar
  63. 63.
    WASA-AT-COSY Collaboration (P. Adlarson et al.), Phys. Lett. B 721, 229 (2013).CrossRefGoogle Scholar
  64. 64.
    K. Schilling, P. Seyboth, G.E. Wolf, Nucl. Phys. B 15, 397 (1970) 18.ADSCrossRefGoogle Scholar
  65. 65.
    W. Roberts, T. Oed, Phys. Rev. C 71, 055201 (2005).ADSCrossRefGoogle Scholar
  66. 66.
    E. Klempt, B.C. Metsch, Eur. Phys. J. A 48, 127 (2012).ADSCrossRefGoogle Scholar
  67. 67.
    E. Klempt, Phys. Rev. C 66, 058201 (2002).ADSCrossRefGoogle Scholar
  68. 68.
    H. Forkel, E. Klempt, Phys. Lett. B 679, 77 (2009).ADSCrossRefGoogle Scholar
  69. 69.
    T. Melde, W. Plessas, B. Sengl, Phys. Rev. D 77, 114002 (2008).ADSCrossRefGoogle Scholar
  70. 70.
    G. Höhler, Handbook Of Pion Nucleon Scattering, in Physics Data, Vol. 12-1 (Fachinform. Zentr. Karlsruhe, 1979).Google Scholar
  71. 71.
    R.E. Cutkosky, Pion - Nucleon Partial Wave Analysis, in Proceedings of the 4th International Conference on Baryon Resonances, Toronto, Canada, July 14-16, 1980, edited by Nethan Isgur (1980).Google Scholar
  72. 72.
    R.A. Arndt et al., Phys. Rev. C 74, 045205 (2006).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • The CBELSA/TAPS Collaboration
  • V. Sokhoyan
    • 1
  • E. Gutz
    • 1
    • 2
  • V. Crede
    • 3
  • H. van Pee
    • 1
  • A. V. Anisovich
    • 1
    • 4
  • J. C. S. Bacelar
    • 5
  • B. Bantes
    • 6
  • O. Bartholomy
    • 1
  • D. Bayadilov
    • 1
    • 4
  • R. Beck
    • 1
  • Y. A. Beloglazov
    • 4
  • R. Castelijns
    • 5
  • H. Dutz
    • 6
  • D. Elsner
    • 6
  • R. Ewald
    • 6
  • F. Frommberger
    • 6
  • M. Fuchs
    • 1
  • Ch. Funke
    • 1
  • R. Gregor
    • 2
  • A. B. Gridnev
    • 4
  • W. Hillert
    • 6
  • Ph. Hoffmeister
    • 1
  • I. Horn
    • 1
  • I. Jaegle
    • 7
  • J. Junkersfeld
    • 1
  • H. Kalinowsky
    • 1
  • S. Kammer
    • 6
  • V. Kleber
    • 6
  • Frank Klein
    • 6
  • Friedrich Klein
    • 6
  • E. Klempt
    • 1
  • M. Kotulla
    • 2
    • 7
  • B. Krusche
    • 7
  • M. Lang
    • 1
  • H. Löhner
    • 5
  • I. V. Lopatin
    • 4
  • S. Lugert
    • 2
  • T. Mertens
    • 7
  • J. G. Messchendorp
    • 5
  • V. Metag
    • 2
  • B. Metsch
    • 1
  • M. Nanova
    • 2
  • V. A. Nikonov
    • 1
    • 4
  • D. Novinsky
    • 1
    • 4
  • R. Novotny
    • 2
  • M. Ostrick
    • 6
  • L. Pant
    • 2
    • 8
  • M. Pfeiffer
    • 2
  • D. Piontek
    • 1
  • A. Roy
    • 2
    • 9
  • A. V. Sarantsev
    • 1
    • 4
  • Ch. Schmidt
    • 1
  • H. Schmieden
    • 6
  • T. Seifen
    • 1
  • S. Shende
    • 5
  • A. Süle
    • 6
  • V. V. Sumachev
    • 4
  • T. Szczepanek
    • 1
  • A. Thiel
    • 1
  • U. Thoma
    • 1
  • D. Trnka
    • 2
  • R. Varma
    • 2
    • 9
  • D. Walther
    • 1
    • 6
  • Ch. Wendel
    • 1
  • A. Wilson
    • 1
    • 3
  1. 1.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.II. Physikalisches InstitutUniversität GießenGießenGermany
  3. 3.Department of PhysicsFlorida State UniversityTallahasseeUSA
  4. 4.Petersburg Nuclear Physics InstituteGatchinaRussia
  5. 5.Kernfysisch Versneller InstituutGroningenThe Netherlands
  6. 6.Physikalisches InstitutUniversität BonnBonnGermany
  7. 7.Institut für PhysikUniversität BaselBaselSwitzerland
  8. 8.Nucl. Phys. Div.BARCMumbaiIndia
  9. 9.Nucl. Phys. Div.BARCMumbaiIndia

Personalised recommendations