Advertisement

Preparatory studies for a high-precision Penning-trap measurement of the 163Ho electron capture Q-value

  • F. Schneider
  • T. Beyer
  • K. Blaum
  • M. Block
  • S. Chenmarev
  • H. Dorrer
  • Ch. E. Düllmann
  • K. Eberhardt
  • M. Eibach
  • S. Eliseev
  • J. Grund
  • U. Köster
  • Sz. Nagy
  • Yu. N. Novikov
  • D. Renisch
  • A. Türler
  • K. Wendt
Regular Article - Experimental Physics

Abstract

The ECHo Collaboration (Electron Capture 163Ho aims to investigate the calorimetric spectrum following the electron capture decay of 163Ho to determine the mass of the electron neutrino. The size of the neutrino mass is reflected in the endpoint region of the spectrum, i.e., the last few eV below the transition energy. To check for systematic uncertainties, an independent determination of this transition energy, the Q-value, is mandatory. Using the TRIGA-TRAP setup, we demonstrate the feasibility of performing this measurement by Penning-trap mass spectrometry. With the currently available, purified 163Ho sample and an improved laser ablation mini-RFQ ion source, we were able to perform direct mass measurements of 163Ho and 163Dy with a sample size of less than 1017 atoms. The measurements were carried out by determining the ratio of the cyclotron frequencies of the two isotopes to those of carbon cluster ions using the time-of-flight ion cyclotron resonance method. The obtained mass excess values are ME(163Ho)= −66379.3(9) keV and ME(163Dy)= −66381.7(8) keV. In addition, the Q-value was measured for the first time by Penning-trap mass spectrometry to be Q = 2.5(7) keV.

Keywords

Neutrino Mass Cyclotron Frequency Electron Capture Decay Endpoint Region Direct Mass Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E. Otten, J. Schall, T. Thümmler et al., Eur. Phys. J. C 40, 447 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    V.N. Aseev, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid, V.M. Lobashev, A.A. Nozik, V.S. Pantuev, V.I. Parfenov et al., Phys. Rev. D 84, 112003 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    KATRIN Collaboration, KATRIN design report 2004 (2005).Google Scholar
  4. 4.
    A.D. Rújula, M. Lusignoli, Phys. Lett. B 118, 429 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    A. Faessler, L. Gastaldo, F. Simkovic, J. Phys. G 42, 015108 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    R.G.H. Robertson, Phys. Rev. C 91, 035504 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    A. Faessler, C. Enss, L. Gastaldo, F. Šimkovic, pre-print (2015), arXiv:1503.02282v2 [nucl-th].
  8. 8.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Lusignoli, M. Vignati, Phys. Lett. B 697, 11 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    P.T. Springer, C.L. Bennett, P.A. Baisden, Phys. Rev. A 35, 679 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    F. Gatti, P. Meunier, C. Salvo, S. Vitale, Phys. Lett. B 398, 415 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    P.C.-O. Ranitzsch, J.P. Porst, S. Kempf, C. Pies, S. Schäfer, D. Hengstler, A. Fleischmann, C. Enss, L. Gastaldo, J. Low, Temp. Phys. 167, 1004 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    L. Gastaldo, K. Blaum, A. Dörr, Ch.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, A. Fässler, A. Fleischmann, S. Kempf et al., J. Low Temp. Phys. 176, 876 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    K. Blaum, Phys. Rep. 425, 1 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    J. Repp, C. Böhm, J.R.C. López-Urrutia, A. Dörr, S. Eliseev, S. George, M. Goncharov, Y.N. Novikov, C. Roux, S. Sturm et al., Appl. Phys. B 107, 983 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    C. Roux, C. Böhm, A. Dörr, S. Eliseev, S. George, M. Goncharov, Y. Novikov, J. Repp, S. Sturm, S. Ulmer et al., Appl. Phys. B 107, 997 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    E.G. Myers, A. Wagner, H. Kracke, B.A. Wesson, Phys. Rev. Lett. 114, 013003 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    C. Smorra, T.R. Rodriguez, T. Beyer, K. Blaum, M. Block, Ch.E. Düllmann, K. Eberhardt, M. Eibach, S. Eliseev, K. Langanke et al., Phys. Rev. C 86, 044604 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    C. Smorra, T. Beyer, K. Blaum, M. Block, Ch.E. Düllmann, K. Eberhardt, M. Eibach, S. Eliseev, S. Nagy, W. Nörtershäuser et al., Phys. Rev. C 85, 027601 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. Eibach, T. Beyer, K. Blaum, M. Block, Ch.E. Düllmann, K. Eberhardt, J. Grund, S. Nagy, H. Nitsche, W. Nörtershäuser et al., Phys. Rev. C 89, 064318 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    J. Ketelaer, J. Krämer, D. Beck, K. Blaum, M. Block, K. Eberhardt, G. Eitel, R. Ferrer, C. Geppert, S. George et al., Nucl. Instrum. Methods A 594, 162 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Naumann, M.C. Michel, J.L. Power, J. Inorg. Nucl. Chem. 15, 195 (1960).CrossRefGoogle Scholar
  23. 23.
    J.W. Engle, E.R. Birnbaum, H.R. Trellue, K.D. John, M.W. Rabin, F.M. Nortier, Nucl. Instrum. Methods B 311, 131 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    U. Köster, M. Günther, D. Habs, Radiother. Oncol. 102, S102 (2012).CrossRefGoogle Scholar
  25. 25.
    G. Savard, S. Becker, G. Bollen, H.J. Kluge, R. Moore, T. Otto, L. Schweikhard, H. Stolzenberg, U. Wiess, Phys. Lett. A 158, 247 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    K. Blaum, G. Bollen, F. Herfurth, A. Kellerbauer, H.-J. Kluge, M. Kuckein, E. Sauvan, C. Scheidenberger, L. Schweikhard, Eur. Phys. J. A 15, 245 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    V.V. Elomaa, T. Eronen, U. Hager, A. Jokinen, T. Kessler, I. Moore, S. Rahaman, C. Weber, J. Äystö, Nucl. Instrum. Methods B 266, 4425 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    L. Schweikhard, K. Blaum, A. Herlert, G. Marx, Eur. J. Mass Spectrom. 11, 457 (2005).CrossRefGoogle Scholar
  29. 29.
    C. Smorra, K. Blaum, K. Eberhardt, M. Eibach, J. Ketelaer, J. Ketter, K. Knuth, S. Nagy, J. Phys. B 42, 154028 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    P. Dawson, Quadrupole mass spectrometry and its applications (Elsevier Scientific Pub Co, Amsterdam, 1976).Google Scholar
  31. 31.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).ADSCrossRefGoogle Scholar
  32. 32.
    M. König, G. Bollen, H.J. Kluge, T. Otto, J. Szerypo, Int. J. Mass Spectron. 142, 95 (1995).ADSCrossRefGoogle Scholar
  33. 33.
    S. George, S. Baruah, B. Blank, K. Blaum, M. Breitenfeldt, U. Hager, F. Herfurth, A. Herlert, A. Kellerbauer, H.J. Kluge et al., Phys. Rev. Lett. 98, 162501 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    A. Kellerbauer, K. Blaum, G. Bollen, F. Herfurth, H.J. Kluge, M. Kuckein, E. Sauvan, C. Scheidenberger, L. Schweikhard, Eur. Phys. J. D 22, 53 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    R. Demirkhanov, V. Dorokhov, M. Dzkuya, Proceedings of the 2nd International Conference Nuclidic Masses (1964).Google Scholar
  36. 36.
    J. Ketelaer, G. Audi, T. Beyer, K. Blaum, M. Block, R.B. Cakirli, R.F. Casten, C. Droese, M. Dworschak, K. Eberhardt et al., Phys. Rev. C 84, 014311 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    M. Redshaw, E. Wingfield, J. McDaniel, E.G. Myers, Phys. Rev. Lett. 98, 053003 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    D. Barillari, J. Vaz, R. Barber, K. Sharma, Phys. Rev. C 67, 064316 (2003).ADSCrossRefGoogle Scholar
  39. 39.
    S. Eliseev, K. Blaum, M. Block, C. Dröse, M. Goncharov, E.M. Ramirez, D.A. Nesterenko, Y.N. Novikov, L. Schweikhard, Phys. Rev. Lett. 110, 082501 (2013).ADSCrossRefGoogle Scholar
  40. 40.
    S. Eliseev, K. Blaum, M. Block, A. Dörr, C. Droese, T. Eronen, M. Goncharov, M. Höcker, J. Ketter, E. Ramirez et al., Appl. Phys. B 114, 107 (2014).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • F. Schneider
    • 1
    • 2
  • T. Beyer
    • 3
  • K. Blaum
    • 3
  • M. Block
    • 1
    • 4
    • 5
  • S. Chenmarev
    • 3
    • 6
  • H. Dorrer
    • 1
    • 7
    • 8
  • Ch. E. Düllmann
    • 1
    • 4
    • 5
    • 9
  • K. Eberhardt
    • 1
    • 5
  • M. Eibach
    • 3
  • S. Eliseev
    • 3
  • J. Grund
    • 1
    • 9
  • U. Köster
    • 10
  • Sz. Nagy
    • 3
  • Yu. N. Novikov
    • 3
    • 6
  • D. Renisch
    • 1
  • A. Türler
    • 7
    • 8
  • K. Wendt
    • 2
    • 9
  1. 1.Institut für KernchemieJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  3. 3.Max-Planck-Institut für KernphysikHeidelbergGermany
  4. 4.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  5. 5.Helmholtz-Institut MainzMainzGermany
  6. 6.Physical FacultySaint Petersburg State UniversitySaint PetersburgRussia
  7. 7.Paul Scherrer InstituteVilligenSwitzerland
  8. 8.Universität BernBernSwitzerland
  9. 9.PRISMA Cluster of ExcellenceJohannes Gutenberg-UniversitätMainzGermany
  10. 10.Institut Laue-LangevinGrenobleFrance

Personalised recommendations