Alpha decay of the new isotope 215U

  • H. B. Yang
  • Z. Y. Zhang
  • J. G. Wang
  • Z. G. Gan
  • L. Ma
  • L. Yu
  • J. Jiang
  • Y. L. Tian
  • B. Ding
  • S. Guo
  • Y. S. Wang
  • T. H. Huang
  • M. D. Sun
  • K. L. Wang
  • S. G. Zhou
  • Z. Z. Ren
  • X. H. Zhou
  • H. S. Xu
  • G. Q. Xiao
Open Access
Letter

Abstract.

The new neutron-deficient isotope 215U was produced in the complete-fusion reaction 180W (40Ar, 5n) 215U. Evaporation residues recoiled from the target were separated in flight from the primary beam by the gas-filled recoil separator SHANS and subsequently identified on the basis of energy-position-time correlation measurement. The \(\alpha\)-particle energy and half-life of 215U were determined to be \(8.428(30)\) MeV and \( 0.73_{-0.29}^{+1.33}\) ms, respectively.

References

  1. 1.
    K. Valli, E.K. Hyde, Phys. Rev. 176, 1377 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    J. Uusitalo et al., Phys. Rev. C 52, 113 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Z.Y. Zhang et al., Phys. Rev. C 89, 014308 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    F.P. Heßberger et al., Eur. Phys. J. A 8, 521 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    D. Vermeulen et al., Z. Phys. A 294, 149 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    NNDC national Nuclear Data Center, Chart of nuclides, http://www.nndc.bnl.gov/chart
  7. 7.
    L. Ma et al., Phys. Rev. C 91, 051302 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Z.Y. Zhang et al., Nucl. Instrum. Methods B 317, 315 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    W. Reisdorf, M. Schädel, Z. Phys. A 343, 47 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    J.A. Heredia et al., Eur. Phys. J. A 46, 337 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K. Valli, W. Treytl, E.K. Hyde, Phys. Rev. 161, 1284 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    C.M. Folden, PHD Thesis, University of California, 94-101 (2004)Google Scholar
  13. 13.
    A.N. Andreyev et al., Nucl. Phys. A 626, 857 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    K.H. Schmidt, C.C. Sahm, K. Pielenz, H.G. Clerc, Z. Phys. A 316, 19 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    O.N. Malyshev et al., Eur. Phys. J. A 8, 295 (2000)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A.P. Leppänen et al., Eur. Phys. J. A 25, s01, 183 (2005) DOI:10.1140/epjad/i2005-06-116-y CrossRefGoogle Scholar
  17. 17.
    A.P. Leppänen et al., Phys. Rev. C 75, 054307 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A.N. Andreyev et al., Z. Phys. A 345, 247 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    J.O. Rasmussen, Phys.Rev. 113, 1593 (1959)ADSCrossRefGoogle Scholar
  20. 20.
    Y.B. Qian, Z.Z. Ren, D.D. Ni, Phys. Rev. C 83, 044317 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • H. B. Yang
    • 1
    • 2
    • 3
  • Z. Y. Zhang
    • 1
  • J. G. Wang
    • 1
  • Z. G. Gan
    • 1
  • L. Ma
    • 1
    • 2
    • 3
  • L. Yu
    • 1
    • 2
  • J. Jiang
    • 1
    • 2
  • Y. L. Tian
    • 1
  • B. Ding
    • 1
  • S. Guo
    • 1
  • Y. S. Wang
    • 1
  • T. H. Huang
    • 1
  • M. D. Sun
    • 1
    • 2
    • 3
  • K. L. Wang
    • 1
    • 2
  • S. G. Zhou
    • 4
  • Z. Z. Ren
    • 5
  • X. H. Zhou
    • 1
  • H. S. Xu
    • 1
  • G. Q. Xiao
    • 1
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  4. 4.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  5. 5.Department of PhysicsNanjing UniversityNanjingChina

Personalised recommendations