Advertisement

Study of the reaction npπ → npπ+π at 1.0 and 1.5 GeV

  • A. P. JerusalimovEmail author
  • A. V. Belyaev
  • V. P. Ladygin
  • A. K. Kurilkin
  • A. Yu. Troyan
  • Yu. A. Troyan
Regular Article - Experimental Physics

Abstract

The npnpπ + π reaction has been studied at the incident neutron energies of 1.0 GeV and 1.5 GeV in 4π-geometry using the neutron beam produced by the breakup of the relativistic deuterons at the JINR Synchrophasotron. The npnpπ + π data obtained at 1.5 GeV demonstrate the dominance of the ΔΔ excitation process with a significant contribution of the higher-lying baryonic resonances, while the data at 1.0 GeV show a non-resonant behavior. The angular and mass distributions are compared with the predictions of different models suggested for the double pion production in the NN collisions. The calculations performed within the model based on the reggeized π-exchange taking one baryon exchange into account are in good agreement with the experimental data obtained at both energies.

Keywords

Invariant Mass Total Cross Section Neutron Beam Invariant Mass Distribution Bubble Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Klempt, J.-M. Richard, Rev. Mod. Phys. 82, 1095 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Anisovich et al., Eur. Phys. J. A 48, 15 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    E. Pickup et al., Phys. Rev. 125, 2091 (1961).ADSCrossRefGoogle Scholar
  5. 5.
    E.L. Hart et al., Phys. Rev. 126, 747 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    A.M. Eisner et al., Phys. Rev. B 138, 670 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    D.C. Brunt et al., Phys. Rev. 187, 1856 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    D.R.F. Cochran et al., Phys. Rev. D 6, 3085 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    F.H. Cverna et al., Phys. Rev. C 23, 1698 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    F. Shimizu et al., Nucl. Phys. A 386, 571 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    L.G. Dakhno et al., Sov. J. Nucl. Phys. 37, 540 (1983).Google Scholar
  12. 12.
    T. Tsuboyama et al., Phys. Rev. C 62, 034001 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    E. Doroshkevich et al., Eur. Phys. J. A 18, 171 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    V.V. Sarantsev et al., Phys. At. Nucl. 70, 1998 (2007).CrossRefGoogle Scholar
  15. 15.
    W. Brodowski et al., Phys. Rev. Lett. 88, 192301 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    J. Johanson et al., Nucl. Phys. A 712, 75 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    J. Pätzold et al., Phys. Rev. C 67, 052202 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    S. Abd El-Bary et al., Eur. Phys. J. A 37, 267 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    S. Abd El-Samad et al., Eur. Phys. J. A 42, 159 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    T. Skorodko et al., Eur. Phys. J. A 35, 317 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    T. Skorodko et al., Phys. Lett. B 679, 30 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    T. Skorodko et al., Phys. Lett. B 695, 155 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    T. Skorodko et al., Eur. Phys. J. A 47, 108 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    P. Adlarson et al., Phys. Lett. B 706, 256 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    B.C. Liu et al., Few-Body Syst. 54, 353 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    L. Alvarez-Ruso, E. Oset, E. Hern'andez, Nucl. Phys. A 633, 519 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    X. Cao, B.-S. Zou, H.-S. Xu, Phys. Rev. C 81, 12 (2010).Google Scholar
  28. 28.
    J. Bystricky et al., J. Phys. 48, 1901 (1987).CrossRefGoogle Scholar
  29. 29.
    C. Besliu et al., Sov. J. Nucl. Phys. 43, 565 (1986).Google Scholar
  30. 30.
    M. Bashkanov et al., Phys. Rev. Lett. 102, 052301 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    P. Adlarson et al., Phys. Rev. Lett. 106, 242302 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    P. Adlarson et al., Phys. Lett. B 721, 229 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    M. Albaladejo, E. Oset, Phys. Rev. C 88, 014006 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    P. Adlarson et al., Phys. Rev. C 88, 055208 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    P. Adlarson et al., Phys. Lett. B 743, 325 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    P. Adlarson et al., Phys. Rev. Lett. 112, 202301 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    P. Adlarson et al., Phys. Rev. C 90, 045207 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    A.K. Kurilkin et al., PoS Baldin ISHEPP XXII, 120 (2014).Google Scholar
  39. 39.
    A.K. Kurilkin et al., EPJ Web Conf. 81, 02009 (2014).CrossRefGoogle Scholar
  40. 40.
    G. Agakishiev, arXiv:1503.04013 [nucl-ex] (2015).
  41. 41.
    M. Bashkanov, H. Clement, T. Skorodko, arXiv:1502.07156 [nucl-ex] (2015).
  42. 42.
    G. Agakishiev et al., Phys. Lett. B 690, 118 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    M. Bashkanov, H. Clement, Eur. Phys. J. A 50, 107 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    A. Abdivaliev et al., Nucl. Phys. B 168, 385 (1980).ADSCrossRefGoogle Scholar
  45. 45.
    A. Abdivaliev et al., Sov. J. Nucl. Phys. 29, 796 (1979).Google Scholar
  46. 46.
    A.P. Gasparian et al., Prib. Tekh. Eksp. 2, 37 (1977).Google Scholar
  47. 47.
    A.V. Belonogov et al., Nucl. Instrum. Meth. 20, 114 (1963).ADSCrossRefGoogle Scholar
  48. 48.
    N.F. Markova, Preprint JINR, P10-3768 (1968).Google Scholar
  49. 49.
    A.P. Jerusalimov, Preprint JINR, E10-2009-157 (2009).Google Scholar
  50. 50.
    J.P. Berge, F.T. Solmitz, H.D. Taft, Rev. Sci. Instrum. 32, 338 (1961).CrossRefGoogle Scholar
  51. 51.
    A. Abdivaliev et al., Nucl. Phys. B 99, 445 (1975).ADSCrossRefGoogle Scholar
  52. 52.
    P.W. Lisowsky et al., Phys. Rev. Lett. 49, 255 (1982).ADSCrossRefGoogle Scholar
  53. 53.
    T.J. Devlin et al., Phys. Rev. D 8, 136 (1983).ADSCrossRefGoogle Scholar
  54. 54.
    A.P. Jerusalimov, arXiv:1203.3330 [nucl-th] (2012).
  55. 55.
    A.P. Jerusalimov, arXiv:1208.3982 [nucl-th] (2012).
  56. 56.
    Particle Data Group, Phys. Lett. B 667, 1 (2008).ADSCrossRefGoogle Scholar
  57. 57.
    Particle Data Group, Phys. Rev. D 86, 010001 (2012).CrossRefGoogle Scholar
  58. 58.
    A.V. Sarantsev et al., Phys. Lett. B 659, 94 (2008).ADSCrossRefGoogle Scholar
  59. 59.
    L.A. Ponomarev, Sov. J. Part. Nucl. 7, 70 (1976).Google Scholar
  60. 60.
    R.A. Arndt et al., Int. J. Mod. Phys. A 18, 449 (2003).ADSCrossRefGoogle Scholar
  61. 61.
    A.B. Kaidalov, A.F. Nilov, Sov. J. Nucl. Phys. 41, 490 (1985).Google Scholar
  62. 62.
    A.B. Kaidalov, A.F. Nilov, Sov. J. Nucl. Phys. 52, 1060 (1990).Google Scholar
  63. 63.
    T. Skorodko, private communication.Google Scholar
  64. 64.
    A.P. Jerusalimov, PoS Baldin ISHEPP XXII, 048 (2014).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. P. Jerusalimov
    • 1
    Email author
  • A. V. Belyaev
    • 1
  • V. P. Ladygin
    • 1
  • A. K. Kurilkin
    • 1
  • A. Yu. Troyan
    • 1
  • Yu. A. Troyan
    • 1
  1. 1.Joint Institute for Nuclear ResearchesDubnaRussian Federation

Personalised recommendations