Measurements of charged hadron fluctuations in pseudo-rapidity bins in 16O-AgBr at 60 A GeV and 32S-AgBr at 200 A GeV

  • Gopa Bhoumik
  • Swarnapratim BhattacharyyaEmail author
  • Argha Deb
  • Dipak Ghosh
Regular Article - Experimental Physics


We have measured the hadron-hadron correlation in the multiparticle production process of 16O-AgBr interactions at 60A GeV and 32S-AgBr interactions at 200A GeV in the forward and backward zone of the pseudo-rapidity space using the normalized factorial cumulant moment method. The experimental results have been compared with the Monte Carlo data generated according to the independent emission model. The results reveal that the observed correlation between the produced hadrons is purely dynamical. Correlation is found to be stronger in the backward zone than that in the forward zone of the pseudo-rapidity space for both interactions. Factorial cumulant moments for the experimental data show a power law rise with decreasing phase space bin size. The results obtained from the experimental data have also been compared with those obtained from analyzing FRITIOF data. Though FRITIOF data itself show the presence of a measured correlation among the hadrons, in most of the cases the values of the factorial cumulant moments are much less than the experimental values and they remain constant with phase space bin size. The study might hint towards the Bose-Einstein correlation as the origin of the observed behavior of the measured correlation. The failure of FRITIOF data to reproduce the exact experimental behavior in terms of factorial cumulant moment also supports this notion as the model does not take the BE correlation into account.


AgBr Rapidity Zone Factorial Moment Average Multiplicity Multiparticle Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Arsene et al., Nucl. Phys. A 757, 1 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    B.B. Back et al., Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J. Adams et al., Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    K. Adcox et al., Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. Bhattacharyya et al., J. Phys. G: Nucl. Part. Phys. 41, 075106 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S.S. Adler et al., Phys. Rev. C 76, 034903 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 75, 034901 (2007)CrossRefGoogle Scholar
  8. 8.
    E. Braidot, Nucl. Phys A 854, 168 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    for the STAR Collaboration (P.K. Netrakanti), Nucl. Phys A 854, 102 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Bozek, W. Broniowski, Phys. Rev. Lett. 109, 062301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Gavin, G. Moschelli, Phys. Rev. C 85, 014905 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H. Bialkowska, Acta Phys. Pol. C 42, 1359 (2011)CrossRefGoogle Scholar
  13. 13.
    M.S. Nilsson et al., Phys. Rev. C 84, 054006 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P. Carruthers et al., Phys. Lett. B 254, 258 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    A. Stuart, J.K. Ord, Kendall’s Advanced Theory of Statistics, Vol. 1, Distribution Theory, 5th edition (Oxford University Press, Oxford, 1987) (see page 87 for a list of first ten cumulants).Google Scholar
  16. 16.
    G. Abbiendi et al., Eur. Phys. J. C 11, 239 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    P. Carruthers, H. Eggers, I. Sarcevic, Phys. Rev. C 44, 1629 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    EHS/NA22 Collaboration (N. Agababyan et al.), Z Phys. C 59, 405 (1993)CrossRefGoogle Scholar
  19. 19.
    M. Charlet, Multiparticle Correlation in $\pi^+{p}$ and $k^{+}p$ interactions at 250 GeV/c, PhD thesis Nijmegen University, unpublished (1994)Google Scholar
  20. 20.
    EHS/NA22 Collaboration (N. Agababyan et al.), Phys. Lett. B 332, 458 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    E665 Collaboration (M. Adams et al.), Phys. Lett. B 335, 535 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    P.L. Jain, G. Singh, Nucl. Phys. A 596, 700 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    D. Ghosh et al., J. Phys. G: Nucl. Part. Phys. 39, 105101 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    G. Singh et al., Phys. Rev. Lett. 61, 1073 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    K. Sengupta et al., Phys. Lett. B 213, 548 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    K. Sengupta, P.L. Jain, G. Sing, S.N. Kim, Phys. Lett. B 236, 219 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    C.F. Powell, P.H. Fowler, D.H. Perkins, Study of elementary particles by the photographic method (Pergamon, Oxford, 1959) pp. 450--464 and references thereinGoogle Scholar
  28. 28.
    D. Ghosh, A.K. Jafry, A. Deb, S. Sarkar, R. Chattopadhyay, S. Das, Phys. Rev. C 59, 2286 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    D. Ghosh, A. Deb, S. Bhattacharyya, J. Phys. G: Nucl. Part. Phys. 38, 065105 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    D. Ghosh, M. Lahiri, A. Deb, K. Purkait, B. Biswas, J. Roychoudhury, R. Chatterjee, A.K. Jafry, Phys. Rev. C 52, 2092 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    D. Ghosh, A. Deb, S. Bhattacharyya, J. Phys. G: Nucl. Part. Phys. 38, 065105 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Bialas, R. Peschanski, Nucl. Phys. B 273, 703 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    A. Bialas, M. Gazdzicki, Phys. Lett. B 252, 483 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)ADSCrossRefGoogle Scholar
  35. 35.
    B. Andersson, G. Gustafson, B. Nilsson-Almqvist, Nucl. Phys. B 281, 289 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    S. Dhamija, M. Kaur, S. Dahiya, J. Phys. G: Nucl. Part. Phys. 28, 1239 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Alessandro De Angelis, Peter Lipa, Wolfgang Ochs, Fractal structure and intermittency in multiparticle production, in Proceeding of the Joint International Lepton-Photon Symposium, Vol. 1 (1991) p. 724Google Scholar
  38. 38.
    A. Bialas, Summary talk in the Proceedings of the Ringberg WorkshopGoogle Scholar
  39. 39.
    R.C. Hwa, W. Ochs, N. Schmitz (Editors), Fluctuations and Fractal Structure (World Scientific, Singapore, 1992)Google Scholar
  40. 40.
    P. Carruthers et al., Phys. Lett. B 222, 487 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    N. Neumeister et al., Z. Phys. C 60, 633 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    M. Charlet, Yad. Fiz. 56, 79 (1993) (Sov. J. Nucl. Fiz. 56Google Scholar
  43. 43.
    I.V. Andreev et al., Phys. Lett. B 316, 583 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    Tadeusz Wibig, Phys. Rev. D 53, 3586 (1996)CrossRefGoogle Scholar
  45. 45.
    I.V. Andreev et al., Phys. Rev. Lett. 67, 3475 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    M.G. Bowler, Phys. Lett. B 276, 237 (1992)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gopa Bhoumik
    • 1
  • Swarnapratim Bhattacharyya
    • 2
    Email author
  • Argha Deb
    • 1
  • Dipak Ghosh
    • 1
  1. 1.Nuclear and Particle Physics Research Centre, Department of PhysicsJadavpur UniversityKolkataIndia
  2. 2.Department of PhysicsNew Alipore CollegeNew Alipore, KolkataIndia

Personalised recommendations