Eta photoproduction in a combined analysis of pion- and photon-induced reactions

  • D. Rönchen
  • M. Döring
  • H. Haberzettl
  • J. Haidenbauer
  • U. -G. Meißner
  • K. Nakayama
Regular Article - Theoretical Physics

Abstract

The ηN final state is isospin-selective and thus provides access to the spectrum of excited nucleons without being affected by excited Δ states. To this end, the world database on eta photoproduction off the proton up to a center-of-mass energy of E ∼ 2.3 GeV is analyzed, including data on differential cross sections, and single- and double-polarization observables. The resonance spectrum and its properties are determined in a combined analysis of eta and pion photoproduction off the proton together with the reactions πNπN, ηN, and . For the analysis, the so-called Jülich coupled-channel framework is used, incorporating unitarity, analyticity, and effective three-body channels. Parameters tied to photoproduction and hadronic interactions are varied simultaneously. The influence of recent MAMI T and F asymmetry data on the eta photoproduction amplitude is discussed in detail.

References

  1. 1.
    S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994) nucl-th/9310030.ADSCrossRefGoogle Scholar
  2. 2.
    M. Ronniger, B.C. Metsch, Eur. Phys. J. A 47, 162 (2011) arXiv:1111.3835 [hep-ph].ADSCrossRefGoogle Scholar
  3. 3.
    Hadron Spectrum Collaboration (R.G. Edwards et al.), Phys. Rev. D 87, 054506 (2013) arXiv:1212.5236 [hep-ph].Google Scholar
  4. 4.
    C.B. Lang, V. Verduci, Phys. Rev. D 87, 054502 (2013) arXiv:1212.5055.ADSCrossRefGoogle Scholar
  5. 5.
    BGR Collaboration (G.P. Engel et al.), Phys. Rev. D 87, 074504 (2013) arXiv:1301.4318 [hep-lat].CrossRefGoogle Scholar
  6. 6.
    R. Koniuk, N. Isgur, Phys. Rev. Lett. 44, 845 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    R.E. Cutkosky, C.P. Forsyth, R.E. Hendrick, R.L. Kelly, Phys. Rev. D 20, 2839 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    G. Höhler, Pion Nucleon Scattering, edited by H. Schopper, Landolt Börnstein, New Series, Group 9b, Vol. I (Springer, New York, 1983).Google Scholar
  9. 9.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 74, 045205 (2006) arXiv:nucl-th/0605082.ADSCrossRefGoogle Scholar
  10. 10.
    D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Eur. Phys. J. A 49, 44 (2013) arXiv:1211.6998 [nucl-th].ADSCrossRefGoogle Scholar
  11. 11.
    V.D. Burkert, H. Kamano, E. Klempt, D. Rönchen, A.V. Sarantsev, T. Sato, A. Švarc, L. Tiator, arXiv:1412.0241 [nucl-ex].
  12. 12.
    S. Ceci, M. Döring, C. Hanhart, S. Krewald, U.-G. Meißner, A. Svarc, Phys. Rev. C 84, 015205 (2011) arXiv:1104.3490 [nucl-th].ADSCrossRefGoogle Scholar
  13. 13.
    S. Ceci, A. Svarc, B. Zauner, Phys. Rev. Lett. 97, 062002 (2006) hep-ph/0603144.ADSCrossRefGoogle Scholar
  14. 14.
    GRAAL Collaboration (V. Kuznetsov et al.), Phys. Lett. B 647, 23 (2007) hep-ex/0606065.CrossRefGoogle Scholar
  15. 15.
    F. Miyahara, J. Kasagi, T. Nakabayashi, H. Fukasawa, R. Hashimoto, T. Ishikawa, T. Kinoshita, K. Nawa et al., Prog. Theor. Phys. Suppl. 168, 90 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A2 Collaboration (D. Werthmüller et al.), Phys. Rev. Lett. 111, 232001 (2013) arXiv:1311.2781 [nucl-ex].CrossRefGoogle Scholar
  17. 17.
    M. Clajus, B.M.K. Nefkens, πN Newsletter 7, 76 (1992).Google Scholar
  18. 18.
    B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2014) arXiv:1410.7680 [nucl-ex].ADSCrossRefGoogle Scholar
  19. 19.
    I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012) arXiv:1109.1720 [hep-ph].ADSCrossRefGoogle Scholar
  20. 20.
    E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010) arXiv:0901.2055 [hep-ph].ADSCrossRefGoogle Scholar
  21. 21.
    CLAS Collaboration (S. Strauch), arXiv:1503.05163 [nucl-ex].
  22. 22.
    A2 at MAMI Collaboration (C.S. Akondi et al.), Phys. Rev. Lett. 113, 102001 (2014) arXiv:1408.3274 [nucl-ex].ADSCrossRefGoogle Scholar
  23. 23.
    I.S. Barker, A. Donnachie, J.K. Storrow, Nucl. Phys. B 95, 347 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    W.T. Chiang, F. Tabakin, Phys. Rev. C 55, 2054 (1997) nucl-th/9611053.ADSCrossRefGoogle Scholar
  25. 25.
    G. Keaton, R. Workman, Phys. Rev. C 54, 1437 (1996) nucl-th/9606052.ADSCrossRefGoogle Scholar
  26. 26.
    A.M. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J. Phys. G 38, 053001 (2011) arXiv:1010.4555 [nucl-th].ADSCrossRefGoogle Scholar
  27. 27.
    T. Vrancx, J. Ryckebusch, T. Van Cuyck, P. Vancraeyveld, Phys. Rev. C 87, 055205 (2013) arXiv:1303.2936 [nucl-th].ADSCrossRefGoogle Scholar
  28. 28.
    J. Nys, T. Vrancx, J. Ryckebusch, J. Phys. G 42, 034016 (2015) arXiv:1502.01259 [nucl-th].ADSCrossRefGoogle Scholar
  29. 29.
    A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).Google Scholar
  30. 30.
    Y. Wunderlich, R. Beck, L. Tiator, Phys. Rev. C 89, 055203 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    B.C. Jackson, Y. Oh, H. Haberzettl, K. Nakayama, Phys. Rev. C 89, 025206 (2014) arXiv:1311.2836 [hep-ph].ADSCrossRefGoogle Scholar
  32. 32.
    B.C. Jackson, Y. Oh, H. Haberzettl, K. Nakayama, arXiv:1503.00845 [nucl-th].
  33. 33.
    W.J. Briscoe, M. Döring, H. Haberzettl, D.M. Manley, M. Naruki, I.I. Strakovsky, E.S. Swanson, arXiv:1503.07763 [hep-ph].
  34. 34.
    N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A 612, 297 (1997) hep-ph/9607459.ADSCrossRefGoogle Scholar
  35. 35.
    T. Inoue, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 65, 035204 (2002) hep-ph/0110333.ADSCrossRefGoogle Scholar
  36. 36.
    B. Borasoy, E. Marco, S. Wetzel, Phys. Rev. C 66, 055208 (2002) hep-ph/0212256.ADSCrossRefGoogle Scholar
  37. 37.
    M. Döring, K. Nakayama, Phys. Lett. B 683, 145 (2010) arXiv:0909.3538 [nucl-th].ADSCrossRefGoogle Scholar
  38. 38.
    M. Mai, P.C. Bruns, U.-G. Meißner, Phys. Rev. D 86, 094033 (2012) arXiv:1207.4923 [nucl-th].ADSCrossRefGoogle Scholar
  39. 39.
    R.A. Arndt, W.J. Briscoe, T.W. Morrison, I.I. Strakovsky, R.L. Workman, A.B. Gridnev, Phys. Rev. C 72, 045202 (2005) nucl-th/0507024.ADSCrossRefGoogle Scholar
  40. 40.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 88 (2012) arXiv:1205.2255 [nucl-th].ADSCrossRefGoogle Scholar
  41. 41.
    V. Shklyar, H. Lenske, U. Mosel, Phys. Rev. C 87, 015201 (2013) arXiv:1206.5414 [nucl-th].ADSCrossRefGoogle Scholar
  42. 42.
    M. Shrestha, D.M. Manley, Phys. Rev. C 86, 055203 (2012) arXiv:1208.2710 [hep-ph].ADSCrossRefGoogle Scholar
  43. 43.
    M. Batinic, S. Ceci, A. Svarc, B. Zauner, Phys. Rev. C 82, 038203 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    A.B. Gridnev, N.G. Kozlenko, Eur. Phys. J. A 4, 187 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    W.T. Chiang, S.N. Yang, L. Tiator, D. Drechsel, Nucl. Phys. A 700, 429 (2002) nucl-th/0110034.ADSCrossRefGoogle Scholar
  46. 46.
    H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 88, 035209 (2013) arXiv:1305.4351 [nucl-th].ADSCrossRefGoogle Scholar
  47. 47.
    G.Y. Chen, S.S. Kamalov, S.N. Yang, D. Drechsel, L. Tiator, Phys. Rev. C 76, 035206 (2007) arXiv:nucl-th/0703096.ADSCrossRefGoogle Scholar
  48. 48.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Phys. Lett. B 681, 26 (2009) arXiv:0903.1781 [nucl-th].ADSCrossRefGoogle Scholar
  49. 49.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009) arXiv:0903.4337 [nucl-th].ADSCrossRefGoogle Scholar
  50. 50.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, D. Rönchen, Nucl. Phys. A 851, 58 (2011) arXiv:1009.3781 [nucl-th].ADSCrossRefGoogle Scholar
  51. 51.
    D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Eur. Phys. J. A 50, 101 (2014) arXiv:1401.0634 [nucl-th].ADSCrossRefGoogle Scholar
  52. 52.
    C. Schütz, J.W. Durso, K. Holinde, J. Speth, Phys. Rev. C 49, 2671 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    R. Aaron, R.D. Amado, J.E. Young, Phys. Rev. 174, 2022 (1968).ADSCrossRefGoogle Scholar
  54. 54.
    F. Huang, M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Phys. Rev. C 85, 054003 (2012) arXiv:1110.3833 [nucl-th].ADSCrossRefGoogle Scholar
  55. 55.
    H. Haberzettl, F. Huang, K. Nakayama, Phys. Rev. C 83, 065502 (2011) arXiv:1103.2065 [nucl-th].ADSCrossRefGoogle Scholar
  56. 56.
    H. Haberzettl, K. Nakayama, S. Krewald, Phys. Rev. C 74, 045202 (2006) nucl-th/0605059.ADSCrossRefGoogle Scholar
  57. 57.
    H. Haberzettl, Phys. Rev. C 56, 2041 (1997) nucl-th/9704057.ADSCrossRefGoogle Scholar
  58. 58.
    R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Phys. Rev. C 86, 015202 (2012) arXiv:1202.0845 [hep-ph].ADSCrossRefGoogle Scholar
  59. 59.
    F. Huang, A. Sibirtsev, S. Krewald, C. Hanhart, J. Haidenbauer, U.-G. Meißner, Eur. Phys. J. A 40, 77 (2009) arXiv:0810.2680 [hep-ph].ADSCrossRefGoogle Scholar
  60. 60.
    R.L. Workman, R.A. Arndt, W.J. Briscoe, M.W. Paris, I.I. Strakovsky, Phys. Rev. C 86, 035202 (2012) arXiv:1204.2277 [hep-ph] (The WI08 solution of the SAID analysis group at the Institute for Nuclear Studies of The George Washington University is published online, http://gwdac.phys.gwu.edu/.ADSCrossRefGoogle Scholar
  61. 61.
    Figures representing the full fit result of this study can be downloaded at http://collaborations.fz-juelich.de/ikp/meson-baryon/main.
  62. 62.
    A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman, AIP Conf. Proc. 1432, 219 (2012) arXiv:1108.5411 [nucl-th].ADSGoogle Scholar
  63. 63.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 66, 055213 (2002) nucl-th/0205067.ADSCrossRefGoogle Scholar
  64. 64.
    Crystal Ball at MAMI Collaboration (E.F. McNicoll et al.), Phys. Rev. C 82, 035208 (2010) 84.Google Scholar
  65. 65.
    GRAAL Collaboration (O. Bartalini et al.), Eur. Phys. J. A 33, 169 (2007) arXiv:0707.1385 [nucl-ex].CrossRefGoogle Scholar
  66. 66.
    B. Krusche, J. Ahrens, G. Anton, R. Beck, M. Fuchs, A.R. Gabler, F. Harter, S. Hall et al., Phys. Rev. Lett. 74, 3736 (1995).ADSCrossRefGoogle Scholar
  67. 67.
    T. Nakabayashi, H. Fukasawa, R. Hashimoto, T. Ishikawa, T. Iwata, H. Kanda, J. Kasagi, T. Kinoshita et al., Phys. Rev. C 74, 035202 (2006).ADSCrossRefGoogle Scholar
  68. 68.
    S.A. Dytman, W.W. Daehnick, J.G. Hardie, M. Yamazaki, E. Booth, J. Miller, M.J. Leitch, C.S. Mishra et al., Phys. Rev. C 51, 2710 (1995).ADSCrossRefGoogle Scholar
  69. 69.
    CB-ELSA Collaboration (V. Credé et al.), Phys. Rev. Lett. 94, 012004 (2005) hep-ex/0311045.ADSCrossRefGoogle Scholar
  70. 70.
    CLAS Collaboration (M. Dugger et al.), Phys. Rev. Lett. 89, 222002 (2002) 89.CrossRefGoogle Scholar
  71. 71.
    CBELSA/TAPS Collaboration (V. Credé et al.), Phys. Rev. C 80, 055202 (2009) arXiv:0909.1248 [nucl-ex].ADSCrossRefGoogle Scholar
  72. 72.
    CLAS Collaboration (M. Williams et al.), Phys. Rev. C 80, 045213 (2009) arXiv:0909.0616 [nucl-ex].CrossRefGoogle Scholar
  73. 73.
    LEPS Collaboration (M. Sumihama et al.), Phys. Rev. C 80, 052201 (2009) arXiv:0910.0900 [nucl-ex].Google Scholar
  74. 74.
    CBELSA and TAPS Collaborations (D. Elsner et al.), Eur. Phys. J. A 33, 147 (2007) nucl-ex/0702032 [NUCL-EX].CrossRefGoogle Scholar
  75. 75.
    C.A. Heusch, C.Y. Prescott, L.S. Rochester, B.D. Winstein, Phys. Rev. Lett. 25, 1381 (1970).ADSCrossRefGoogle Scholar
  76. 76.
    M. Hongoh, K. Kikuchi, H. Kobayakawa, K. Mori, H. Senjyu, K. Ueno, T. Yamaki, H. Obayashi et al., Lett. Nuovo Cimento 2S2, 317 (1971) (Lett. Nuovo Cimento 2.CrossRefGoogle Scholar
  77. 77.
    A. Bock, G. Anton, W. Beulertz, C. Bradtke, H. Dutz, R. Gehring, S. Goertz, K. Helbing et al., Phys. Rev. Lett. 81, 534 (1998).ADSCrossRefGoogle Scholar
  78. 78.
    R.M. Brown, A.G. Clark, P.J. Duke, W.M. Evans, R.J. Gray, E.S. Groves, R.J. Ott, H.R. Renshall et al., Nucl. Phys. B 153, 89 (1979).ADSCrossRefGoogle Scholar
  79. 79.
    R.D. Baker, R.M. Brown, A.G. Clark, J.K. Davies, J. De Pagter, W.M. Evans, R.J. Gray, E.S. Groves et al., Nucl. Phys. B 156, 93 (1979).ADSCrossRefGoogle Scholar
  80. 80.
    D.E. Bayadilov, Y.A. Beloglazov, A.B. Gridnev, N.G. Kozlenko, S.P. Kruglov, A.A. Kulbardis, I.V. Lopatin, D.V. Novinsky et al., Eur. Phys. J. A 35, 287 (2008).ADSCrossRefGoogle Scholar
  81. 81.
    S. Prakhov, B.M.K. Nefkens, C.E. Allgower, R.A. Arndt, V. Bekrenev, W.J. Briscoe, M. Clajus, J.R. Comfort et al., Phys. Rev. C 72, 015203 (2005).ADSCrossRefGoogle Scholar
  82. 82.
    N.G. Kozlenko, V.V. Abaev, V.S. Bekrenev, S.P. Kruglov, A.A. Koulbardis, I.V. Lopatin, A.B. Starostin, B. Draper et al., Phys. At. Nucl. 66, 110 (2003) (Yad. Fiz. 66.CrossRefGoogle Scholar
  83. 83.
    N.C. Debenham, D.M. Binnie, L. Camilleri, J. Carr, A. Duane, D.A. Garbutt, W.G. Jones, J. Keyne et al., Phys. Rev. D 12, 2545 (1975).ADSCrossRefGoogle Scholar
  84. 84.
    W.B. Richards, C.B. Chiu, R.D. Eandi, A.C. Helmholz, R.W. Kenney, B. Moyer, J.A. Poirier, R.J. Cence et al., Phys. Rev. D 1, 10 (1970).ADSCrossRefGoogle Scholar
  85. 85.
    CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014) arXiv:1402.4125 [nucl-ex].CrossRefGoogle Scholar
  86. 86.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014).CrossRefGoogle Scholar
  87. 87.
    R.L. Workman, L. Tiator, A. Sarantsev, Phys. Rev. C 87, 068201 (2013) arXiv:1304.4029 [nucl-th].ADSCrossRefGoogle Scholar
  88. 88.
    A. Svarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, R.L. Workman, Phys. Rev. C 91, 015207 (2015) arXiv:1405.6474 [nucl-th].ADSCrossRefGoogle Scholar
  89. 89.
    A. Svarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, R.L. Workman, Phys. Rev. C 89, 065208 (2014) arXiv:1404.1544 [nucl-th].ADSCrossRefGoogle Scholar
  90. 90.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012) arXiv:1112.4937 [hep-ph].ADSCrossRefGoogle Scholar
  91. 91.
    V.A. Nikonov, A.V. Anisovich, E. Klempt, A.V. Sarantsev, U. Thoma, Phys. Lett. B 662, 245 (2008) arXiv:0707.3600 [hep-ph].ADSCrossRefGoogle Scholar
  92. 92.
    O.V. Maxwell, Phys. Rev. C 85, 034611 (2012).ADSCrossRefGoogle Scholar
  93. 93.
    T. Mart, M.J. Kholili, Phys. Rev. C 86, 022201 (2012) arXiv:1208.2780 [nucl-th].ADSCrossRefGoogle Scholar
  94. 94.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055211 (2002) nucl-th/0207066.ADSCrossRefGoogle Scholar
  95. 95.
    V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D.R. Phillips, Nucl. Phys. A 872, 69 (2011) arXiv:1107.5509 [nucl-th].ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. Rönchen
    • 1
  • M. Döring
    • 2
  • H. Haberzettl
    • 2
  • J. Haidenbauer
    • 3
    • 4
  • U. -G. Meißner
    • 1
    • 3
    • 4
  • K. Nakayama
    • 3
    • 5
  1. 1.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Institute for Nuclear Studies and Department of PhysicsThe George Washington UniversityWashington, DCUSA
  3. 3.Institut für Kernphysik and Jülich Center for Hadron PhysicsForschungszentrum JülichJülichGermany
  4. 4.Institute for Advanced SimulationForschungszentrum JülichJülichGermany
  5. 5.Department of Physics and AstronomyUniversity of GeorgiaAthensUSA

Personalised recommendations