Advertisement

Spallation reactions: A successful interplay between modeling and applications

  • J. -C. DavidEmail author
Review

Abstract

The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200MeV deuterons and 400MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. In the same year, R. Serber described the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a workshop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.

Keywords

Excitation Function Residual Nucleus Thick Target Transport Code American Physical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.M. Brobeck et al., Phys. Rev. 71, 449 (1947).ADSGoogle Scholar
  2. 2.
    J. Kaplan, Phys. Rev. 72, 738 (1947).Google Scholar
  3. 3.
    R. Serber, Phys. Rev. 72, 1114 (1947).ADSGoogle Scholar
  4. 4.
    P.R. O'connor, G.T. Seaborg, Phys. Rev. 74, 1189 (1948).ADSGoogle Scholar
  5. 5.
    G.T. Seaborg, I. Perlman, Rev. Mod. Phys. 20, 585 (1948).ADSGoogle Scholar
  6. 6.
    D. Mancusi et al., Rev. Mod. Phys. 20, 585 (2011).Google Scholar
  7. 7.
    K. Ammon et al., Meteorit. Planet. Sci. 44, 485 (2009).ADSGoogle Scholar
  8. 8.
    S.G. Mashnik, arXiv:astro-ph/0008382v1 (2000).
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    M. Futakawa et al., Neutron News 22, 15 (2011) JSNS, http://j-parc.jp/MatLife/en/index.html.Google Scholar
  13. 13.
  14. 14.
  15. 15.
    D. Filges, F. Goldenbaum, Handbook of Spallation Research: Theory, Experiments and Applications (John Wiley & Sons, 2010).Google Scholar
  16. 16.
    Yu.A. Korovin et al., Nucl. Instrum. Methods A 624, 20 (2010).ADSGoogle Scholar
  17. 17.
    Y. Watanabe et al., J. Korean Phys. Soc. 59, 1040 (2011) DOI:10.3938/jkps.59.1040.Google Scholar
  18. 18.
    J. Aichelin, Phys. Rep. 202, 233 (1991).ADSGoogle Scholar
  19. 19.
    V.E. Bunakov, G.V. Matvejev, Z. Phys. A 322, 511 (1985).ADSGoogle Scholar
  20. 20.
    J. Cugnon, Few-Body Sys. 53, 143 (2012).ADSGoogle Scholar
  21. 21.
    E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933).ADSGoogle Scholar
  22. 22.
    N. Metropolis et al., Phys. Rev. 110, 185 (1958).MathSciNetADSGoogle Scholar
  23. 23.
    N. Metropolis et al., Phys. Rev. 110, 204 (1958).MathSciNetADSGoogle Scholar
  24. 24.
    M.L. Goldberger, Phys. Rev. 74, 1269 (1948).ADSGoogle Scholar
  25. 25.
    H.W. Bertini, Phys. Rev. 131, 1801 (1963).ADSGoogle Scholar
  26. 26.
    J. Cugnon et al., Phys. Rev. C 56, 2431 (1997).ADSGoogle Scholar
  27. 27.
    A. Boudard et al., Phys. Rev. C 66, 044615 (2002).ADSGoogle Scholar
  28. 28.
    A. Boudard et al., Phys. Rev. C 87, 014606 (2013).ADSGoogle Scholar
  29. 29.
    S.G. Mashnik, CEM03.03 and LAQGSM03.03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes, LANL Report LA-UR-08-2931, arXiv:0805.0751v2 [nucl-th] (2008).
  30. 30.
    J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966).ADSGoogle Scholar
  31. 31.
    J. Cugnon, P. Henrotte, Eur. Phys. J. A 16, 393 (2005).ADSGoogle Scholar
  32. 32.
    S. Hashimoto et al., Nucl. Instrum. Methods B 333, 27 (2014).ADSGoogle Scholar
  33. 33.
    A.K. Weaver et al., Phys. Med. Biol. 18, 64 (1973).Google Scholar
  34. 34.
    S. Leray et al., Phys. Rev. C 65, 044621 (2002).ADSGoogle Scholar
  35. 35.
    C. Villagrasa-Canton et al., Phys. Rev. C 75, 044603 (2007).ADSGoogle Scholar
  36. 36.
    P. Napolitani et al., Phys. Rev. C 70, 054607 (2004).ADSGoogle Scholar
  37. 37.
    T. Enqvist et al., Nucl. Phys. A 686, 481 (2001).MathSciNetADSGoogle Scholar
  38. 38.
    V. Weisskopf, Phys. Rev. 52, 295 (1937).ADSGoogle Scholar
  39. 39.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965).ADSGoogle Scholar
  40. 40.
    A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 255 (1975).Google Scholar
  41. 41.
    K.H. Schmidt et al., Z. Phys. A 308, 215 (1982).ADSGoogle Scholar
  42. 42.
    A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 612 (1976).Google Scholar
  43. 43.
    J. Toke, W.J. Swiatecki, Nucl. Phys. A 372, 141 (1981).ADSGoogle Scholar
  44. 44.
    C. Guet et al., Phys. Lett. B 205, 427 (1988).ADSGoogle Scholar
  45. 45.
    S. Shlomo et J.B. Natowitz, Phys. Rev. C 44, 2878 (1991).ADSGoogle Scholar
  46. 46.
    R. Junghans et al., Nucl. Phys. A 629, 635 (1998).ADSGoogle Scholar
  47. 47.
    V. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940).ADSGoogle Scholar
  48. 48.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).zbMATHADSGoogle Scholar
  49. 49.
    J.R. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1962).Google Scholar
  50. 50.
    R. Bass, Nucl. Phys. A 23, 45 (1974).ADSGoogle Scholar
  51. 51.
    D. Filges, Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions (2008), www-nds.iaea.org/publications/indc/indc-nds-0530/.Google Scholar
  52. 52.
    The Evaluated Structure Data File (ENSDF) maintained by the National Nuclear Data Center (NNDC), Brookhaven National Laboratory, http://www.nndc.bnl.gov/.
  53. 53.
    T. Ogawa et al., Nucl. Instrum. Methods B 325, 35 (2014).ADSGoogle Scholar
  54. 54.
    A.J. Sierk, Phys. Rev. C 33, 2039 (1986).ADSGoogle Scholar
  55. 55.
    A.S. Iljinov, M.V. Mebel, Nucl. Phys. A 543, 517 (1992).ADSGoogle Scholar
  56. 56.
    B. Jurado et al., Nucl. Phys. A 747, 14 (2005).ADSGoogle Scholar
  57. 57.
    J. Benlliure et al., Nucl. Phys. A 628, 458 (1998).ADSGoogle Scholar
  58. 58.
    F. Atchison, Spallation and fission in heavy metal nuclei under medium energy proton bombardment Meeting on Targets for neutron beam spallation sources, Edited by G. Bauer, KFA Jülich Germany, Jül-conf-34 (1980).Google Scholar
  59. 59.
    S. Furihata, The Gem Code - A simulation Program for the Evaporation and Fission Process of an Excited Nucleus, JAERI-Data/Code 2001-015 (2001).Google Scholar
  60. 60.
    L.G. Moretto, G.J. Wozniak, The Decay of Hot Nuclei, LBL-26207, DE89 J06609 (1988).Google Scholar
  61. 61.
    J.P. Bondorf, J. Phys. 37, C5-195 (1976).Google Scholar
  62. 62.
    R.K. Su et al., Phys. Rev. C 37, 1770 (1988).ADSGoogle Scholar
  63. 63.
    J.P. Bondorf et al., Phys. Rep. 257, 133 (1995).ADSGoogle Scholar
  64. 64.
    A.S. Botvina et al., Phys. Rev. E 62, R64 (2000).ADSGoogle Scholar
  65. 65.
    K.-H. Schmidt et al., Nucl. Phys. A 710, 157 (2002).ADSGoogle Scholar
  66. 66.
    J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002).ADSGoogle Scholar
  67. 67.
    T. Enqvist et al., Nucl. Phys. A 658, 47 (1999).ADSGoogle Scholar
  68. 68.
    N. Buyukcizmeci et al., Eur. Phys. J. A 25, 57 (2005).Google Scholar
  69. 69.
    G.A. Souliotis et al., Phys. Rev. C 75, 011601R (2007).ADSGoogle Scholar
  70. 70.
    A.S. Botvina et al., Phys. Rev. C 74, 044609 (2006).ADSGoogle Scholar
  71. 71.
    E. Fermi, Prog. Theor. Phys. 5, 570 (1950).MathSciNetADSGoogle Scholar
  72. 72.
    M. Épherre, É. Gradsztajn, J. Phys. 28, 745 (1967).Google Scholar
  73. 73.
    B.V. Carlson et al., J. Phys. Conf. Ser. 312, 082017 (2011).ADSGoogle Scholar
  74. 74.
    M. Salvatores, É. Fort, CLEFS CEA N. 45, pages 22–29 (2001) (in French).Google Scholar
  75. 75.
    R.E. Prael, User guide to LCS: the LAHET code system, LA-UR-89-3014 (1989).Google Scholar
  76. 76.
    R.E. Prael, Release Notes for LAHET Code System with LAHET Version 3.16 (2001).Google Scholar
  77. 77.
    R.C. Reedy, J. Masarik, Lunar. Planet. Sci. XXV, 1119 (1994).ADSGoogle Scholar
  78. 78.
    J. Masarik, J. Beer, J. Geo. Res. 104, 12099 (1999).ADSGoogle Scholar
  79. 79.
    T.W. Armstrong, K.C. Chandler, Nucl. Sci. Eng. 49, 110 (1972).Google Scholar
  80. 80.
    K.C. Chandler, T.W. Armstrong, Operating instructions for the high-energy nucleon-meson transport code hetc, ORNL-4744 (1972).Google Scholar
  81. 81.
    T.A. Gabriel, The high energy transport code HETC, ORNL/TM-9727 (1985).Google Scholar
  82. 82.
    W.A. Coleman, T.W. Armstrong, Nucl. Sci. Eng. 43, 353 (1971).Google Scholar
  83. 83.
    J.F. Briesmeister, MCNP - A general Monte Carlo Code for Neutron and Photon Transport, LA-7396-M Revision 2 (1986).Google Scholar
  84. 84.
    J.-C. David, Spallation Neutron Production on Thick Target at Saturne, in Proceedings of the International Workshop on Nuclear Data for the Transmutation of Nuclear Waste - GSI-Darmstadt, Germany - September 1-5, 2003, ISSN 3-00-012276-1.Google Scholar
  85. 85.
    J.S. Hendricks, MCNPX extensions version 2.5.0, LA-UR-05-2675 (2005).Google Scholar
  86. 86.
    Geant4 collaboration, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).ADSGoogle Scholar
  87. 87.
    P. Kaitaniemi et al., Prog. Nucl. Sci. Tech. 2, 788 (2011).Google Scholar
  88. 88.
    D. Mancusi et al., Phys. Rev. C 90, 054602 (2014).ADSGoogle Scholar
  89. 89.
    T. Sato et al., J. Nucl. Sci. Technol. 50, 913 (2013).Google Scholar
  90. 90.
    B. Brun, GEANT3 User's guide, Rep. DD/EE/84-1, Eur. Org. for Nucl. Res., Geneva (1987).Google Scholar
  91. 91.
    J.F. Briesmeister, MCNP - A general Monte Carlo N-particle transport code version 4A, LA-12625-M (1993).Google Scholar
  92. 92.
    G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007).ADSGoogle Scholar
  93. 93.
    A. Ferrari, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.Google Scholar
  94. 94.
    N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628 (1995).Google Scholar
  95. 95.
    O.E. Krivosheev, N.V. Mokhov, MARS Code Status, in Proc. Monte Carlo 2000 Conf., Lisbon, October 23-26, 2000, Fermilab-Conf-00/181 (2000) p. 943.Google Scholar
  96. 96.
    N.V. Mokhov, Status of MARS Code, Fermilab-Conf-03/053 (2003).Google Scholar
  97. 97.
    N.V. Mokhov, Recent Enhancements to the MARS15 Code, Fermilab-Conf-04/053 (2004), http://www-ap.fnal.gov/MARS/.
  98. 98.
    R.E. Prael, M. Bozoian, Adaptation of the Multistage Pre-equilibrium Model for the Monte Carlo method, LA-UR-88-238 (1988).Google Scholar
  99. 99.
    P.A. Aarnio, Enhancements to the FLUKA86 program (FLUKA87), CERN/TIS-RP/190 (1987).Google Scholar
  100. 100.
    J. Barish, HETFIS: High-Energy Nucleon-Meson Transport Code with Fission, ORNL/TM-7882 (1981).Google Scholar
  101. 101.
    S.G. Mashnik et al., J. Phys. Conf. Ser. 41, 340 (2006).ADSGoogle Scholar
  102. 102.
    S.G. Mashnik, CEM03.01 User Manual, LANL Report LA-UR-05-7321 (2005), RSICC Code Package PSR-532, http://www-rsicc.ornl.gov/codes/psr/psr5/psr532.html and http://www.nea.fr/abs/html/psr-0532.html.
  103. 103.
    S. Furihata, Nucl. Instrum. Methods Phys. Res. B 171, 251 (2000).ADSGoogle Scholar
  104. 104.
    Y. Nara et al., Phys. Rev. C 61, 024901 (2000).ADSGoogle Scholar
  105. 105.
    K. Niita et al., Phys. Rev. C 52, 2620 (1995).ADSGoogle Scholar
  106. 106.
    I. Dostrovsky et al., Phys. Rev. 116, 683 (1959).ADSGoogle Scholar
  107. 107.
    K.K. Gudima et al., Nucl. Phys. A 401, 329 (1983).ADSGoogle Scholar
  108. 108.
    A.S. Botvina A.S. et al., Nucl. Phys. A 475, 663 (1987).ADSGoogle Scholar
  109. 109.
    M. Blann, Phys. Rev. Lett. 28, 757 (1972).ADSGoogle Scholar
  110. 110.
    L. Bertocchi, Nuovo Cimento A 11, 45 (1972) and references therein.ADSGoogle Scholar
  111. 111.
    H. Sorge, Phys. Rev. C 52, 3291 (1995).ADSGoogle Scholar
  112. 112.
    J. Ranft, Phys. Rev. D 51, 54 (1995).ADSGoogle Scholar
  113. 113.
    I. Kodeli, SINBAD Shielding Benchmark Experiments Status and Planned Activities, in The American Nuclear Society's 14th Biennial Topical Meeting of the Radiation Protection and Shielding Division, Carlsbad New Mexico, USA, April 3-6, 2006, https://www.oecd-nea.org/science/wprs/shielding/sinbad/.
  114. 114.
    M. Blann, International Code Comparison for Intermediate Energy Nuclear Data, NEA/OECD, NSC/DOC(94)-2, Paris, 1993.Google Scholar
  115. 115.
    R. Michel, P. Nagel, International Codes and Model Intercomparison for Intermediate Energy Activation Yields, NEA/OECD, NSC/DOC(97)-1, Paris, 1997.Google Scholar
  116. 116.
    D. Filges, Thick Target Benchmark for Lead and Tungsten, NEA/OECD, NSC/DOC(95) 2, Paris, 1995.Google Scholar
  117. 117.
    J.-P. Meulders, High and Intermediate energy Nuclear Data for Accelerator-driven Systems, HINDAS final report (2005) http://www.theo.phys.ulg.ac.be/~cugnon/Final_Scientific_Report_HINDAS.pdf.
  118. 118.
    J.-P. Meulders, Physical Aspects of Lead as a Neutron Producing Target for Accelerator Transmutation Devices Final Report on the Concerted Action: Physical Aspects of Lead as a Neutron Producing Target for Accelerator Transmutation Devices, 2001, European Atomic Energy Commission, Luxembourg.Google Scholar
  119. 119.
    E. González-Romero, NUDATRA/EUROTRANS nuclear data for nuclear waste transmutation, in Proceedings of the Workshop on Technology and Components of Accelerator-driven Systems, Karlsruhe, Germany, 15-17 March 2010, ISBN 978-92-64-11727-3 OECD 2011.Google Scholar
  120. 120.
    E. Gonzalez, Final Report of the project ANDES (Accurate Nuclear Data for nuclear Energy Sustainability), http://www.andes-nd.eu/system/files/docs/ANDES_FinalReport_v8x.pdf.
  121. 121.
    A. Letourneau et al., Nucl. Phys. A 712, 133 (2002).ADSGoogle Scholar
  122. 122.
    A. Boudard, Comparison of INCL4 with Experiments, in Proceedings of the International Workshop on Nuclear Data for the Transmutation of Nuclear Waste, GSI-Darmstadt, Germany, September 1-5, 2003, edited by Aleksandra Kelic, Karl-Heinz Schmidt ISBN 3-00-012276-1.Google Scholar
  123. 123.
    C.M. Herbach, FZJ Juelich annual report (2001).Google Scholar
  124. 124.
    C.M. Herbach, in Proc. of the SARE-5meeting, OECD, Paris, July 2000.Google Scholar
  125. 125.
    J. Taieb et al., Nucl. Phys. A 724, 413 (2003).ADSGoogle Scholar
  126. 126.
    M. Bernas et al., Nucl. Phys. A 725, 213 (2003).ADSGoogle Scholar
  127. 127.
    Th. Aoust, J. Cugnon, Eur. Phys. J. A 21, 79 (2004).ADSGoogle Scholar
  128. 128.
    Th. Aoust, J. Cugnon, Phys. Rev. C 74, 064607 (2006).ADSGoogle Scholar
  129. 129.
    J. Cugnon et al., J. Phys. Conf. Ser. 312, 082019 (2011).ADSGoogle Scholar
  130. 130.
    A. Bubak et al., Phys. Rev. C 76, 014618 (2007).ADSGoogle Scholar
  131. 131.
    A. Budzanowski et al., Phys. Rev. C 78, 024603 (2008).ADSGoogle Scholar
  132. 132.
    Y. Ayyad et al., Phys. Rev. C 89, 054610 (2014).ADSGoogle Scholar
  133. 133.
    J.-C. David, Report on the predicting capabilities of the standard simulation tools in the 150–600MeV energy range, FP7-ANDES, WP4 Deliverable D4.1.Google Scholar
  134. 134.
    R.E.L. Green, R.G. Korteling, Phys. Rev. C 22, 1594 (1980).ADSGoogle Scholar
  135. 135.
    J. Cugnon, Report on the validation of the simulation tools developed in Task 4.4 and assessment of the expected reduction of uncertainty on key parameters of the ADS, FP7-ANDES, WP4 Deliverable D4.6.Google Scholar
  136. 136.
    J.-C. David et al., Eur. Phys. J. A 49, 29 (2013).ADSGoogle Scholar
  137. 137.
    D. Mancusi et al., Phys. Rev. C 91, 034602 (2015).ADSGoogle Scholar
  138. 138.
    B. Rapp, Benchmark calculations on particle production within the EURISOL DS project, EURISOL DS/Task5/TN-06-04, 2006.Google Scholar
  139. 139.
    J.-C. David, Benchmark calculations on residue production within the EURISOL-DS project.Google Scholar
  140. 140.
    J.-C. David, Benchmark calculations on residue production within the EURISOL-DS project.Google Scholar
  141. 141.
    M. Felcini, A. Ferrari, Validation of FLUKA calculated cross-sections for radioisotope production in proton-on-target collisions at proton energies around 1GeV, EURISOL DS/Task 5/TN-06-01.Google Scholar
  142. 142.
    L. Pienkowski, FLUKA simulation for NESSI experiment, EURISOL DS/Task5/TN-06-05.Google Scholar
  143. 143.
    D. Ene, High-energy neutron attenuation in iron and concrete: Verification of FLUKA Monte Carlo code by comparison with HIMAC experimental results, EURISOL DS/Task5/TN-06-14.Google Scholar
  144. 144.
    D. Ene, Layout of the EURISOL post-accelerator, CEA Saclay Internal report: IRFU-09-109 - (2009) EURISOL DS Technical Report 05-25-2009-0036.Google Scholar
  145. 145.
    N. Otuka et al., Nucl. Data Sheets 120, 272 (2014) http://www-nds.iaea.org/exfor/.ADSGoogle Scholar
  146. 146.
    A. Koning, A. Mengoni, Quality Improvement of the EXFOR database, NEA/NSC/WPEC/DOC(2010)428, OECD 2011.Google Scholar
  147. 147.
    MCNPX User's Manual Version 2.6.0, April 2008, edited by Denise B. Pelowitz, LA-CP-07-1473.Google Scholar
  148. 148.
  149. 149.
    P.G. Young, LA-12343-MS, Los Alamos National Laboratory, 1992.Google Scholar
  150. 150.
    Y. Iwamoto et al., Nucl. Instrum. Methods A 690, 10 (2012).ADSGoogle Scholar
  151. 151.
    H. Yashima et al., Radiat. Prot. Dosim. 161, 139 (2014) DOI:10.1093/rpd/nct334.Google Scholar
  152. 152.
    I. Leya, R. Michel, Nucl. Instrum. Methods B 269, 2487 (2011).ADSGoogle Scholar
  153. 153.
    Y. Iwamoto et al., Phys. Rev. C 70, 024602 (2004).ADSGoogle Scholar
  154. 154.
    S.G. Mashnik, User Manual for the Code CEM95 (1995) http://www.nea.fr/abs/html/iaea1247.html.
  155. 155.
    S.G. Mashnik, A.J. Sierk, Proc. AccApp00, November 12-16, 2000, Washington, DC (USA), ANS, La Grange Park, IL, 2001, pp. 328-341, E-print: nucl-th/0011064.Google Scholar
  156. 156.
  157. 157.
    S. Mashnik, Validation and Verification of MCNP6 Against High-Energy Experimental Data and Calculations by Other Codes. I. The CEM Testing Primer, LA-UR-11-05129 (2011).Google Scholar
  158. 158.
    S. Mashnik, Validation and Verification of MCNP6 Against High-Energy Experimental Data and Calculations by Other Codes. II. The LAQGSM Testing Primer, LA-UR-11-05627 (2011).Google Scholar
  159. 159.
    S. Banerjee et al., J. Phys. Conf. Ser. 331, 032034 (2011).ADSGoogle Scholar
  160. 160.
    L. Sihver et al., Acta Astronaut. 63, 865 (2008).ADSGoogle Scholar
  161. 161.
    N.V. Mokhov, S.I. Striganov, FERMILAB-CONF-07-009-AD January 2007.Google Scholar
  162. 162.
    S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011) DOI:10.3938/jkps.59.791.Google Scholar
  163. 163.
    J.-C. David et al., Prog. Nucl. Sci. Tech. 2, 942 (2011).Google Scholar
  164. 164.
    E.L. Hjort et al., Phys. Rev. C 53, 237 (1996).ADSGoogle Scholar
  165. 165.
    A. Guertin et al., Eur. Phys. J. A 23, 49 (2005).ADSGoogle Scholar
  166. 166.
    M.M. Meier et al., Nucl. Sci. Eng. 110, 289 (1992).Google Scholar
  167. 167.
    W.B. Amian et al., Nucl. Sci. Eng. 112, 78 (1992).Google Scholar
  168. 168.
    K. Ishibashi et al., J. Nucl. Sci. Tech. 34, 529 (1997).Google Scholar
  169. 169.
    A. Letourneau et al., Nucl. Instrum. Methods B 170, 299 (2000).ADSGoogle Scholar
  170. 170.
    J. Franz et al., Nucl. Phys. A 510, 774 (1990).ADSGoogle Scholar
  171. 171.
    F.E. Bertrand et al., Phys. Rev. C 8, 1045 (1973).ADSGoogle Scholar
  172. 172.
    A.A. Cowley et al., Phys. Rev. C 54, 778 (1996).ADSGoogle Scholar
  173. 173.
    A. Budzanowski et al., Phys. Rev. C 80, 054604 (2009).ADSGoogle Scholar
  174. 174.
    S.V. Fortsch et al., Phys. Rev. C 43, 691 (1991).ADSGoogle Scholar
  175. 175.
    R.E. Chrien et al., Phys. Rev. C 21, 1014 (1980).ADSGoogle Scholar
  176. 176.
    J.A. McGill et al., Phys. Rev. C 29, 204 (1984).ADSGoogle Scholar
  177. 177.
    C.-M. Herbach et al., Nucl. Phys. A 765, 426 (2006).ADSGoogle Scholar
  178. 178.
    D.R.F. Cochran et al., Phys. Rev. D 6, 3085 (1972).ADSGoogle Scholar
  179. 179.
    H. Enyo et al., Phys. Lett. B 159, 1 (1985).ADSGoogle Scholar
  180. 180.
    L. Audouin et al., Nucl. Phys. A 768, 1 (2006).ADSGoogle Scholar
  181. 181.
    M.V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006).ADSGoogle Scholar
  182. 182.
    M. Bernas et al., Nucl. Phys. A 765, 197 (2006).ADSGoogle Scholar
  183. 183.
    R. Michel et al., Nucl. Instrum. Methods B 103, 183 (1995).ADSGoogle Scholar
  184. 184.
    Th. Schiekel et al., Nucl. Instrum. Methods B 114, 91 (1996).ADSGoogle Scholar
  185. 185.
    R. Michel et al., J. Nucl. Sci. Technol. Suppl. 2, 242 (2002).Google Scholar
  186. 186.
    K. Ammon et al., Nucl. Instrum. Methods B 266, 2 (2008).ADSGoogle Scholar
  187. 187.
    Yu.E. Titarenko et al., Phys. Rev. C 78, 034615 (2008).ADSGoogle Scholar
  188. 188.
    M. Gloris et al., Nucl. Instrum. Methods A 463, 593 (2001).ADSGoogle Scholar
  189. 189.
    I. Leya et al., Nucl. Instrum. Methods B 229, 1 (2005).ADSGoogle Scholar
  190. 190.
    Yu.E. Titarenko et al., Nucl. Instrum. Methods A 562, 801 (2006).ADSGoogle Scholar
  191. 191.
    D. Schumann et al., J. Phys. G 38, 065103 (2011).ADSGoogle Scholar
  192. 192.
    R. Michel, The Concept of Intrinsic Discrepancy Applied to the Comparison of Experimental and Theoretical Data for Benchmarking Spallation Models, IAEA - Consultants' Meeting on Spallation Reactions (6-7 October) 2009, https://www-nds.iaea.org/spallations/2009cm/.
  193. 193.
    Y. Sawada et al., Nucl. Instrum. Methods B 291, 38 (2012).ADSGoogle Scholar
  194. 194.
    J.L. Ulmann, APT padionuclide production experiment technical report, LA-UR-95-3327 (1995).Google Scholar
  195. 195.
    J. Janczyszyn, Benchmark on radionuclides production and heat generation rates in lead target exposed to 660MeV protons, AGH - University of Science and Technology (Krakow) - EC EUROTRANS-NUDATRA and IAEA CRP Report, 2011.Google Scholar
  196. 196.
    W. Pohorecki, Thick lead target exposed to 660MeV protons: benchmark model on radioactive nuclides production and heat generation, and beyond, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008) pp. 1225–1228 DOI: 10.1051/ndata:07745.Google Scholar
  197. 197.
    MCNPX User's Manual Version 2.5.0, April 2005, edited by Denise B. Pelowitz, LA-CP-05-0369.Google Scholar
  198. 198.
    A. Fasso, The physics models of FLUKA: status and recent developments, in Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California, ePrint hep-ph/0306267 (2003).Google Scholar
  199. 199.
    A. Ferrari, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010, SLAC- R-773, INFN-TC-05-11, 2005.Google Scholar
  200. 200.
    J. Adam et al., Eur. Phys. J. A 23, 61 (2005) DOI:10.1140/epja/i2004-10031-y.ADSGoogle Scholar
  201. 201.
    M. Majerle et al., J. Phys. Conf. Ser. 41, 331 (2006) DOI:10.1088/1742-6596/41/1/036.ADSGoogle Scholar
  202. 202.
    M. Majerle et al., Nucl. Instrum. Methods A 580, 110 (2007).ADSGoogle Scholar
  203. 203.
    A. Krása et al., Nucl. Instrum. Methods A 615, 70 (2010).ADSGoogle Scholar
  204. 204.
    J. Oh et al., Prog. Nucl. Sci. Tech. 1, 85 (2011).Google Scholar
  205. 205.
    M.M. Meier et al., Nucl. Sci. Eng. 102, 310 (1989).Google Scholar
  206. 206.
    M.M. Meier et al., Nucl. Sci. Eng. 104, 339 (1990).Google Scholar
  207. 207.
    Y. Iwamoto et al., Nucl. Instrum. Methods A 620, 484 (2010).ADSGoogle Scholar
  208. 208.
    M. Majerle, PhD Thesis, Czech Technical University in Prague (2009).Google Scholar
  209. 209.
    S. Ménard, PhD Thesis, Université d'Orsay (1998).Google Scholar
  210. 210.
    C. Varignon, PhD Thesis, Université de Caen (1999).Google Scholar
  211. 211.
    S. Meigo et al., Nucl. Instrum. Methods A 431, 521 (1999).ADSGoogle Scholar
  212. 212.
    A. YU Konobeyev, U. Fischer, Reference data for evaluation of gas production cross-sections in proton induced reactions at intermediate energies, KIT scientific reports 7660, DOI:10.5445/KSP/1000038463 (2014).
  213. 213.
    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012) www.talys.eu/tendl-2013.html.ADSGoogle Scholar
  214. 214.
    V.S. Barashenkov et al., At. Energ. 87, 283 (1999).Google Scholar
  215. 215.
    N.M. Larson, Compact Covariance Matrix, in ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6, BNL-NCS-4494505-Rev., cross-section Evaluation Working Group (Brookhaven National Laboratory, NY, USA, 2005) https://www.oecd-nea.org/dbdata/data/endf102.htm.
  216. 216.
    Y. Watanabe, in Proceedings of the International Conference on Nuclear Data for Science and Technology (ND2004) (Santa Fe, USA, 2004) (2004) p. 326.Google Scholar
  217. 217.
    K. Niita et al., Phys. Rev. C 52, 2620 (1995) JAERIData/Code 99-042 (1999).ADSGoogle Scholar
  218. 218.
    Y. Nara et al., Phys. Rev. C 61, 024901 (2001).ADSGoogle Scholar
  219. 219.
    M.B. Chadwick et al., Nucl. Data. Sheets C 107, 2931 (2006).ADSGoogle Scholar
  220. 220.
    A.J. Koning, D. Rochman, TENDL-2009: TALYS-based Evaluated Nuclear Data Library, http://www.talys.eu/tendl-2009/.
  221. 221.
    H. Takada et al., J. Nucl. Sci. Technol. 46, 589 (2009).Google Scholar
  222. 222.
    R. Trappitsch, I. Leya, Meteorit. Planet. Sci. 48, 195 (2013) DOI:10.1111/maps.12051.ADSGoogle Scholar
  223. 223.
    J.A. Simpson, Annu. Rev. Nucl. Part. Sci. 33, 323 (1983).ADSGoogle Scholar
  224. 224.
    I. Leya, J. Masarik, Meteorit. Planet. Sci. 44, 1061 (2009).ADSGoogle Scholar
  225. 225.
    R.C. Reedy, Nucl. Instrum. Methods B 294, 470 (2013).ADSGoogle Scholar
  226. 226.
    R.F. Carlson, At. Data Nucl. Data Tables 63, 93 (1996).ADSGoogle Scholar
  227. 227.
    R.E. Prael, M.B. Chadwick, Applications of Evaluated Nuclear Data in the LAHET CODE, LA-UR-97-1744 (1997).Google Scholar
  228. 228.
    B.C. Barashenkov, Cross-sections of Interactions of Particles and Nuclei with Nuclei (OlYal, Dubna, 1993) (in Russian).Google Scholar
  229. 229.
    J.-C. David et al., Mem. Soc. Astron. Ital. 82, 909 (2011).ADSGoogle Scholar
  230. 230.
    S.G. Mashnik, R.E. Prael, K.K. Gudima, LANL Report LA-UR-06-8652 (2007).Google Scholar
  231. 231.
    S.G. Mashnik, LANL Report LA-UR-98-6000 (1998), Eprint: nucl-th/9812071, Proc. SARE-4, Knoxville, TN, September 13-16, 1998, edited by T.A. Gabriel (ORNL, 1999) pp. 151–162.Google Scholar
  232. 232.
    S.G. Mashnik, L.M. Kerby, Nucl. Instrum. Methods A 764, 59 (2014).ADSGoogle Scholar
  233. 233.
    E. Kim et al., Nucl. Sci. Eng. 129, 209 (1998).Google Scholar
  234. 234.
    E. Kim et al., Nucl. Sci. Tech. 36, 29 (1999).Google Scholar
  235. 235.
    J.M. Sisterson, Nucl. Instrum. Methods B 261, 993 (2007).ADSGoogle Scholar
  236. 236.
    S. Sekimoto et al., J. Korean Phys. Soc. 59, 1916 (2011).Google Scholar
  237. 237.
    H. Yashima et al., Proc. Radiochim. Acta 1, 135 (2011).Google Scholar
  238. 238.
    K. Ninomiya et al., Proc. Radiochim. Acta 1, 123 (2011).Google Scholar
  239. 239.
    L.R. Veeser et al., Phys. Rev. C 16, 1792 (1977).ADSGoogle Scholar
  240. 240.
    Y. Uno et al., Nucl. Sci. Eng. 122, 247 (1996).Google Scholar
  241. 241.
    A.J. Koning, D. Rochman, TENDL-2010: TALYS-based Evaluated Nuclear Data Library, ftp://ftp.nrg.eu/pub/www/talys/tendl2010/tendl2010.html.Google Scholar
  242. 242.
    I. Leya et al., Meteorit. Planet. Sci. 35, 259 (2000).ADSGoogle Scholar
  243. 243.
    A. Ingemarsson et al., Nucl. Phys. A 676, 3 (2000).ADSGoogle Scholar
  244. 244.
    G. Igo, B.D. Wilkins, Phys. Rev. 131, 1251 (1963).ADSGoogle Scholar
  245. 245.
    P.H. Stelson, F.K. McGowan, Phys. Rev. B 133, 911 (1964).ADSGoogle Scholar
  246. 246.
    V.N. Levkovskij, Activation cross-sections for Nuclides of Average Masses ($A = 40-100$) by Protons and Alpha-Particles with Average Energies ($E = 10-50$MeV) (Inter Vesi, Moscow, 1991).Google Scholar
  247. 247.
    A. Yadav et al., Phys. Rev. C 78, 044606 (2008).ADSGoogle Scholar
  248. 248.
    S. Tanaka, J. Phys. Soc. Jpn. 15, 2159 (1960).ADSGoogle Scholar
  249. 249.
    Yu.E. Titarenko et al., Phys. Rev. C 65, 064610 (2002).ADSGoogle Scholar
  250. 250.
    J. Cornell, Y. Blumenfeld, G. Fortuna, Final report of the eurisol design study (2005-2009) (GANIL, 2009).Google Scholar
  251. 251.
    D. Ene, In-target yields for RIB production: Part II: two stage target configuration, CEA Saclay Internal report: IRFU-09-87 (2009).Google Scholar
  252. 252.
    S. Chabod et al., Eur. Phys. J. A 45, 131 (2010).ADSGoogle Scholar
  253. 253.
    T. Stora, The EURISOL Facility: Feasibility study for the 100-kW direct targets (2005), CERN EDMS Doc. #758813, http://edms.cern.ch/document/758813/2 and on the http://www.eurisol.org/site02/ website in direct_target/publications_internal_task_note.php.
  254. 254.
    J. Cornell, The EURISOL report - Feasibility study for the EURopean Isotope-Separation-On-Line radioactive beam facility (Ganil, Caen, 2003) appendix C available at http://pro.ganil-spiral2.eu/eurisol/feasibility-study-reports/feasibility-study-appendix-c.
  255. 255.
    R. Page, Selection of key experiments with the associated instrumentation (2007) http://www.eurisol.org/site02/physics_and_instrumentation/.
  256. 256.
    S. Chabod, Optimization of in-target yields for RIB production: Part I: direct targets, Internal Report, Irfu-08-21 (2008).Google Scholar
  257. 257.
    W.B. Wilson, Status of CINDER'90 Codes and Data, LA-UR-98-361 (1998).Google Scholar
  258. 258.
    B. Rapp, Shielding Aspects of Accelerators, Targets and Irradiation Facilities Eighth Meeting (SATIF-8), NEA/NSC/DOC(2010)6 (2010) page 251.Google Scholar
  259. 259.
    D. Ene, Radiation protection aspects of the EURISOL Multi-MW target shielding, CEA Saclay Internal report: IRFU-09-15 (2009).Google Scholar
  260. 260.
    R. Moormann, Ess-target inventories and their radiotoxic and toxic potential, Document ESS-R-1205-R.Moormann-1-02 (2003).Google Scholar
  261. 261.
    R. Moormann, Safety aspects of high power targets for European spallation sources, International Conference on the Physics of Reactors - Nuclear Power: A Sustainable Resource, Interlaken, Switzerland, September 14-19 (2008).Google Scholar
  262. 262.
    National Nuclear data Centre On-Line Service, http://www.nndc.bnl.gov/.
  263. 263.
    H. Iwase et al., J. Nucl. Sci. Tech. 39, 1142 (2002).Google Scholar
  264. 264.
    S. Furihata, H. Nakashima, Analysis of activation yields by INC/GEM, JAERI-Conf-2001-006 (2006).Google Scholar
  265. 265.
    L. Zanini, Neutronic and Nuclear Post-test Analysis of MEGAPIE, PSI Report 08-04 (2008) ISSN 1019-0643.Google Scholar
  266. 266.
    G.S. Bauer et al., J. Nucl. Mater. 296, 17 (2001) ISSN 0022-3115.ADSGoogle Scholar
  267. 267.
    L. Zanini et al., J. Nucl. Mater. 415, 367 (2011).ADSGoogle Scholar
  268. 268.
    F. Michel-Sendis et al., Nucl. Instrum. Methods B 268, 2257 (2010).ADSGoogle Scholar
  269. 269.
    R. Ridikas et al., Eur. Phys. J. A 32, 1 (2007).ADSGoogle Scholar
  270. 270.
    J.-C. David, NUDATRA - WP 5.4 - Task T5.4.3 Activation calculations for the MEGAPIE target with INCL4 and ABLA, and comparison with other codes, Internal report, Irfu-08-453 (2008).Google Scholar
  271. 271.
    Denise B. Pelowitz, MCNPX 2.7.0 Extensions, LA-UR-11-02295 (2011).Google Scholar
  272. 272.
    N. Thiollière et al., Nucl. Sci. Eng. 169, 178 (2011).Google Scholar
  273. 273.
    J.-C. David, INCL4.5-ABLA07: What's new for the assessment of spallation target activation?, 4th, HPTW, Malmö, Sweden, May 2-6, 2011, www.hep.princeton.edu/~mcdonald/mumu/target/ in David/david_050411.pdf.
  274. 274.
    J.-C. David, Spallation: understanding for predicting!?, report of Habilitation à Diriger des Recherches (in French) Irfu-12-259, http://tel.archives-ouvertes.fr/tel-00811587.
  275. 275.
    Y. Tall, Volatile elements production rates in a proton-irradiated molten lead-bismuth target, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008) pp. 1069–1072 - DOI: 10.1051/ndata:07762.Google Scholar
  276. 276.
    L. Zanini et al., Nucl. Data Sheets 119, 292 (2014).ADSGoogle Scholar
  277. 277.
    Yu.A. Korovin et al., J. Yad. Konstanty 117, 3 (1992).MathSciNetGoogle Scholar
  278. 278.
    W.J. Ramler et al., Phys. Rev. 114, 154 (1959).ADSGoogle Scholar
  279. 279.
    R.M. Lambrecht, S. Mirzadeh, J. Labelled Comp. Radiopharmaceut. 21, 1288 (1984).Google Scholar
  280. 280.
    R.M. Lambrecht, S. Mirzadeh, Appl. Radiat. Isot. 36, 443 (1985).Google Scholar
  281. 281.
    A.R. Barnett, J.S. Lilley, Phys. Rev. C 9, 2010 (1974).ADSGoogle Scholar
  282. 282.
    G. Deconninck, M. Longree, Ann. Soc. Sci. Bruxelles 88, 341 (1974).Google Scholar
  283. 283.
    E.L. Kelly, E. Segre, Phys. Rev. 75, 999 (1949).ADSGoogle Scholar
  284. 284.
    H.B. Patel et al., Nuovo Cimento A 112, 1439 (1999).ADSGoogle Scholar
  285. 285.
    I.A. Rizvi et al., Appl. Radiat. Isot. 41, 215 (1990).Google Scholar
  286. 286.
    J.D. Stickler, K.J. Hofstetter, Phys. Rev. C 9, 1064 (1974).ADSGoogle Scholar
  287. 287.
    N.L. Singh et al., Nuovo Cimento A 107, 1635 (1994).ADSGoogle Scholar
  288. 288.
    A. Hermanne et al., Appl. Radiat. Isot. 63, 1 (2005) A. Hermanne, Experimental Study of the cross sections of alpha-Particle Induced Reactions on 209Bi.Google Scholar
  289. 289.
    S.S. Rattan et al., Radiochim. Acta 57, 7 (1992).Google Scholar
  290. 290.
    J.M. Carpenter, National School on Neutron and X-ray Scattering, Oak Ridge 11-24 August (2013) Carpenter-NeutronGeneration2013.pdf at http://neutrons.ornl.gov/conf/nxs2013/lecture/pdf/.
  291. 291.
    ESS Technical Design Report.Google Scholar
  292. 292.
    A. Leprince, Reliability and use of the INCL4.6-ABLA07 spallation model in the frame of the European Spallation Source (ESS) target design, CEA Saclay Internal report: IRFU-14-25 (2014).Google Scholar
  293. 293.
    S. Leray et al., Nucl. Instrum. Methods B 268, 581 (2010).ADSGoogle Scholar
  294. 294.
    GUM (Guide to the expression of Uncertainty in Measurement), JCGM 100:2008, http://www.bipm.org/fr/publications/guides/gum.html.
  295. 295.
    A. Bolshakova et al., Eur. Phys. J. C 70, 543 (2010) and references therein.ADSGoogle Scholar
  296. 296.
    M.G. Catanesi et al., Phys. Rev. C 77, 055207 (2008).ADSGoogle Scholar
  297. 297.
    A. Bolshakova et al., Eur. Phys. J. C 62, 293 (2009).ADSGoogle Scholar
  298. 298.
    S. Pedoux, J. Cugnon et al., Nucl. Phys. A 866, 16 (2011).ADSGoogle Scholar
  299. 299.
    M.G. Catanesi et al., Eur. Phys. J. C 54, 37 (2008).ADSGoogle Scholar
  300. 300.
    M.G. Catanesi et al., Eur. Phys. J. C 31, 787 (2007).ADSGoogle Scholar
  301. 301.
    A. Lou, D.T. Goodhead, Phys. Rev. 168, 1214 (1968).ADSGoogle Scholar
  302. 302.
    D.A. Evans, D.T. Goodhead, Nucl. Phys. B 3, 441 (1967).ADSGoogle Scholar
  303. 303.
    J. Cugnon et al., Phys. Rev. C 41, 1701 (1990).ADSGoogle Scholar
  304. 304.
    K. Pysz et al., Nucl. Instrum. Methods A 420, 356 (1999).ADSGoogle Scholar
  305. 305.
    Z. Rudy, Non-mesonic hyperon decay in heavy hypernuclei, Habilitation - Report No. 1811/PH, 1999, Institute of Physics, Jagellonian University.Google Scholar
  306. 306.
    Gy. Wolf et al., Nucl. Phys. A 552, 549 (1993).ADSGoogle Scholar
  307. 307.
    Y. Song et al., Phys. At. Nucl. 73, 1707 (2010).Google Scholar
  308. 308.
    M. Goncalves et al., Phys. Lett. B 406, 1 (1997).ADSGoogle Scholar
  309. 309.
    S. de Pina et al., Phys. Lett. B 434, 1 (1998).ADSGoogle Scholar
  310. 310.
    M. Bockhorst et al., Z. Phys. C 63, 37 (1994).ADSGoogle Scholar
  311. 311.
    K.-H. Glander et al., Eur. Phys. J. A 19, 251 (2004).ADSGoogle Scholar
  312. 312.
    B. Juliá-Díaz et al., Phys. Rev. C 73, 055204 (2006).ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Irfu/SPhNCEA/SaclayGif-sur-Yvette CedexFrance

Personalised recommendations