Advertisement

First direct high-precision energy determination for the 8.4 and 20.7 keV nuclear transitions in 169Tm

  • A. Kh. Inoyatov
  • A. Kovalík
  • D. V. Filosofov
  • M. Ryšavý
  • L. L. Perevoshchikov
  • Yu. B. Gurov
Regular Article - Experimental Physics

Abstract

Energies of 8410.1 ± 0.4, 20743.9 ± 0.3, and 63121.6 ± 1.2 eV were determined for the 8.4 keV M1 + E2, 20.7 keV M1 + E2, and 63.1 keV E1 nuclear transitions in 169Tm (generated in the EC decay of 169Yb, respectively, by means of the internal conversion electron spectroscopy. The 169Yb sources used were prepared by vacuum evaporation deposition on polycrystalline carbon and platinum foils as well as by ion implantation at 30keV into a polycrystalline aluminum foil. The relevant conversion electron spectra were measured by a high-resolution combined electrostatic electron spectrometer at 7 eV instrumental resoluition. Values of 0.0326(14) and 0.0259(17) were derived from our experimental data for the E2 admixture parameter |δ (E2/M1)| for the 8.4 and 20.7 keV transitions, respectively. A possible effect of nuclear structure on multipolarity of the 20.7 keV transition was also investigated.

Keywords

Conversion Electron Thulium Nuclear Transition Electron Binding Energy Electron Capture Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Coral M. Baglin, Nucl. Data Sheets 109, 2033 (2008) DOI:10.1016/j.nds.2008.08.001.ADSGoogle Scholar
  2. 2.
    R.B. Firestone, V.S. Shirley, Tables of Isotopes, 8th edition (Wiley-Interscience, New York, 1996) p. 6919.Google Scholar
  3. 3.
    V.A. Balalaev, B.S. Dzhelepov, V.E. Ter-Nersesyants, The isobar nuclei with mass number A = 169, 169Ho → 169Er → 169Tm ← 169Yb, in Properties of the Atomic Nuclei, Vol. 19 (Nauka, Leningrad, 1976) p. 78 (in Russian).Google Scholar
  4. 4.
    K.N. Shlyagin, P.S. Samoilov, Zhur. Exp. Theor. Phys. 34, 29 (1958).Google Scholar
  5. 5.
    P. van Assche, M. Néve de Mévergnies, J. Verviers, J. Phys. 24, 850 (1963).Google Scholar
  6. 6.
    T.A. Carlson, P. Erman, K. Fransson, Nucl. Phys. A 111, 371 (1968).ADSGoogle Scholar
  7. 7.
    E.N. Hatch, F. Boem, P. Marmier, J.W. DuMond, Phys. Rev. 104, 745 (1956).ADSGoogle Scholar
  8. 8.
    V. Wagner, I. Adam, S. Batsev, B. Kracik, M. Fišer, D. Srnka, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1811 (1990) Bull. Acad. Sci. USSR, Phys. Ser., 54.Google Scholar
  9. 9.
    J.M. Cork, M.K. Brice, D.W. Martin, L.C. Schmid, G.R. Helmer, Phys. Rev. 101, 1042 (1956).ADSGoogle Scholar
  10. 10.
    J.W. Mihelich, T.J. Ward, K.P. Jacob, Phys. Rev. 103, 1285 (1956).ADSGoogle Scholar
  11. 11.
    S.A. Baranov, R.M. Polevoi, I.F. Rodionov, G.V. Shishkin, At. Energ. 3, 256 (1957).Google Scholar
  12. 12.
    K.Ya. Gromov, B.S. Dzhelepov, B.K. Preobrazhenskii, Izv. Akad. Nauk. SSSR, Ser. Fiz. 22, 775 (1958) Bull. Acad. Sci. USSR, Phys. Ser., 22.Google Scholar
  13. 13.
    E.N. Jensen, L.J. Laslett, R.T. Nichols, W.W. Pratt, Phys. Rev. 79, 243 (1950).Google Scholar
  14. 14.
    D.S. Martin, E.N. Hughes, R.T. Nichols, E.N. Jensen, Phys. Rev. 82, 579 (1951).ADSGoogle Scholar
  15. 15.
    J. Morel, M. Etcheverry, J. Plagnard, Appl. Radiat. Isot. 52, 455 (2000).Google Scholar
  16. 16.
    A. Kovalík, M.A. Mahmoud, J. Electron. Spectrosc. Relat. Phenom. 61, 323 (1993).Google Scholar
  17. 17.
    A. Kovalík, V.M. Gorozhankin, A.F. Novgorodov, J. Electron. Spectrosc. Relat. Phenom. 60, 71 (1992).Google Scholar
  18. 18.
    Ch. Briançon, B. Legrand, R.J. Walen, Ts. Vylov, A. Minkova, A. Inoyatov, Nucl. Instrum. Methods 221, 547 (1984) DOI:10.1016/0167-5087(84)90062-0.Google Scholar
  19. 19.
    A.Kh. Inoyatov, A. Kovalík, D.V. Filosofov, Yu.V. Yushkevich, M. Ryšavý, M. Zbořil, J. Electron. Spectrosc. Relat. Phenom. 202, 46 (2015).Google Scholar
  20. 20.
    K.D. Sevier, At. Data Nucl. Data Tables 24, 323 (1979) DOI:10.1016/0092-640X(79)90012-3.ADSGoogle Scholar
  21. 21.
    O. Dragoun, A. Spalek, J. Kašpar, J. Bonn, A. Kovalík, E.W. Otten, D. Vénos, Ch. Weinheimer, Appl. Radiat. Isot. 69, 672 (2011).Google Scholar
  22. 22.
    M. Zbořil, S. Bauer, M. Beck, J. Bonn, O. Dragoun, J. Jakubek, K. Johnston, A. Kovalík, E.W. Otten, K. Schlösser, M. Slezák, A. Spalek, T. Thümmler, D. Vénos, J. Zemlička, Ch. Weinheimer, JINST 8, P03009 (2013) DOI:10.1088/1748-0221/8/03/P03009.ADSGoogle Scholar
  23. 23.
  24. 24.
    L. Gastaldo, K. Blaum, A. Doerr, Ch.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, A. Faessler, A. Fleischmann, S. Kempf, M. Krivoruchenko, S. Lahiri, M. Maiti, Yu.N. Novikov, P.C.-O. Ranitzsch, F. Simkovic, Z. Szusc, M. Wegner, J. Low Temp. Phys. 176, 876 (2014).ADSGoogle Scholar
  25. 25.
    Simon Cotton, Lanthanide and Actinide Chemistry in Inorganic Chemistry: A Textbook Series (John Wiley, 2006).Google Scholar
  26. 26.
    M. Fišer, V. Brabec, O. Dragoun, A. Kovalík, J. Frana, M. Ryšavý, Int. J. Appl. Radiat. Isot. 36, 219 (1985).Google Scholar
  27. 27.
    V.N. Gerasimov, A.G. Zelenkov, V.M. Kulakov, V.A. Pchelin, A.A. Soldatov, L.V. Chistyakov, Yader. Fiz. 34, 3 (1981).Google Scholar
  28. 28.
    V.N. Gerasimov, A.G. Zelenkov, V.M. Kulakov, V.A. Pchelin, M.V. Sokolovskaya, A.A. Soldatov, L.V. Chistyakov, Zh. Eksp. Teor. Fiz. 82, 362 (1982).Google Scholar
  29. 29.
  30. 30.
    A. Spalek, Surf. Interf. Anal. 15, 739 (1990) DOI:10.1002/sia.740151206.Google Scholar
  31. 31.
    R.B. Firestone, V.S. Shirley, Tables of Isotopes, 8th edition (Wiley, New York, 1996) appendix C-3.Google Scholar
  32. 32.
    A.Kh. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalík, J. Adam, L.L. Perevoshchikov, M. Ryšavý, Eur. Phys. J. A 47, 64 (2011) DOI:10.1140/epja/i2011-11064-9.ADSGoogle Scholar
  33. 33.
    G.L. Borchert, W. Scheck, K.P. Wieder, Z. Naturforsch. A 30, 274 (1975).ADSGoogle Scholar
  34. 34.
    M. Lederer, V.S. Shirley, Tables of Isotopes, 7th edition (Wiley, New York, 1978) appendix 3.Google Scholar
  35. 35.
    A. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalík, L.L. Perevoshchikov, Ts. Vylov, J. Electron. Spectrosc. Relat. Phenom. 160, 54 (2007) DOI:10.1016/j.elspec.2007.06.005.Google Scholar
  36. 36.
    S. Hüfner, Photoelectron Spectroscopy - Principles and Applications, 3rd edition (Springer-Verlag, Berlin Heidelberg, 2003) p. 640.Google Scholar
  37. 37.
    W. Lotz, J. Opt. Soc. Am. 60, 206 (1970) DOI:10.1364/JOSA.60.000206.ADSGoogle Scholar
  38. 38.
    A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST Standard Reference Database 20, Version 4.1, “X-ray Photoelectron Spectroscopy Database”, http://srdata.nist.gov/xps/selEnergyType.aspx.
  39. 39.
    K.P. Artamonova, A.A. Voronkov, E.P. Grigorev, A.V. Zolotavin, V.O. Sergeev, Izv. Akad. Nauk. SSSR, Ser. Fiz. 40, 38 (1976) Bull. Acad. Sci. USSR, Phys. Ser., 40.Google Scholar
  40. 40.
    M. Ryšavý, O. Dragoun, M. Vinduška, Czech. J. Phys. B 27, 538 (1977) DOI:10.1007/BF011587131.ADSGoogle Scholar
  41. 41.
    C.C. Lu, T.A. Carlson, F.B. Malik, T.C. Tucker, C.W. Nestor Jr., At. Data 3, 1 (1971) DOI:10.1016/S0092-640X(71)80002-5.ADSGoogle Scholar
  42. 42.
    M. Ryšavý, O. Dragoun, Comput. Phys. Commun. 19, 93 (1980).ADSGoogle Scholar
  43. 43.
    H.C. Pauli, Helv. Phys. Acta 40, 713 (1967).Google Scholar
  44. 44.
    O. Dragoun, Adv. Electronics Electron. Phys. 60, 1 (1983).Google Scholar
  45. 45.
    R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 6, 1 (1969).ADSGoogle Scholar
  46. 46.
    A. Kovalík, E.A. Yakushev, A.F. Novgorodov, V.M. Gorozhankin, M. Mahmoud, in Proceedings of the 51st International Conference on Nuclear Spectroscopy and Nuclear Structure: “Features of Nuclear excitation states and mechanisms of nuclear reactions”, September 3–8, 2001, Sarov, Russia (PNPI, 2006) p. 177.Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Kh. Inoyatov
    • 1
    • 2
  • A. Kovalík
    • 1
    • 3
  • D. V. Filosofov
    • 1
  • M. Ryšavý
    • 3
  • L. L. Perevoshchikov
    • 1
  • Yu. B. Gurov
    • 1
    • 4
  1. 1.Laboratory of Nuclear ProblemsJINRDubna, Moscow RegionRussian Federation
  2. 2.Institute of Applied PhysicsNational UniversityTashkentRepublic of Uzbekistan
  3. 3.Nuclear Physics Institute of the ASCRŘež near PragueCzech Republic
  4. 4.National Research Nuclear University MEPhIMoscowRussian Federation

Personalised recommendations