Advertisement

On the two remaning issues in the gauge-invariant decomposition problem of the nucleon spin

  • M. WakamatsuEmail author
Regular Article - Theoretical Physics

Abstract

The question whether the total angular momentum of the gluon in the nucleon can be decomposed into its spin and orbital parts without conflict with the gauge-invariance principle has been an object of long-lasting debate. Despite a remarkable progress achieved through the recent intensive researches, the following two issues still remains to be clarified more transparently. The first issue is to resolve the apparent conflict between the proposed gauge-invariant decomposition of the total gluon angular momentum and the textbook statement that the total angular momentum of the photon cannot be gauge-invariantly decomposed into its spin and orbital parts. We show that this problem is also intimately connected with the uniqueness or nonuniqueness problem of the nucleon spin decomposition. The second practically more important issue is: among the two physically inequivalent decompositions of the nucleon spin, i.e. the “canonical” type decomposition and the “mechanical” type decomposition, which can we say is more physical or closer to direct observation? In the present paper, we try to answer both these questions as clearly as possible.

Keywords

Transverse Momentum Wigner Distribution Nucleon Spin Orbital Part Siver Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    EMC Collaboration (J. Aschman et al.), Phys. Lett. B 206, 364 (1988).CrossRefADSGoogle Scholar
  2. 2.
    EMC Collaboration (J. Aschman et al.), Nucl. Phys. B 328, 1 (1989).CrossRefADSGoogle Scholar
  3. 3.
    R.L. Jaffe, A. Manohar, Nucl. Phys. B 337, 509 (1990).CrossRefADSGoogle Scholar
  4. 4.
    E. Leader, C. Lorcé, Phys. Rep. 541, 163 (2014).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    M. Wakamatsu, Int. J. Mod. Phys. A 29, 1430012 (2014).CrossRefADSGoogle Scholar
  6. 6.
    X. Ji, Phys. Rev. Lett. 78, 610 (1997).CrossRefADSGoogle Scholar
  7. 7.
    X. Ji, Phys. Rev. D 58, 056003 (1998).CrossRefADSGoogle Scholar
  8. 8.
    A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics (John Willey & Sons Inc., 1965).Google Scholar
  9. 9.
    J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons (Springer-Verlar, Berlin, 1976).Google Scholar
  10. 10.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982).Google Scholar
  11. 11.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms (John Wiley & Sons Inc., 1989).Google Scholar
  12. 12.
    R.A. Beth, Phys. Rev. 50, 115 (1936).CrossRefADSGoogle Scholar
  13. 13.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992).CrossRefADSGoogle Scholar
  14. 14.
    X.-S. Chen, X.-F. Lü, W.-M. Sun, F. Wang, T. Goldman, Phys. Rev. Lett. 100, 232002 (2008).CrossRefADSGoogle Scholar
  15. 15.
    X.-S. Chen, W.-M. Sun, X.-F. Lü, F. Wang, T. Goldman, Phys. Rev. Lett. 103, 062001 (2009).CrossRefADSGoogle Scholar
  16. 16.
    M. Wakamatsu, Phys. Rev. D 81, 114010 (2010).CrossRefADSGoogle Scholar
  17. 17.
    M. Wakamatsu, Phys. Rev. D 83, 014012 (2011).CrossRefADSGoogle Scholar
  18. 18.
    S.V. Bashinsky, R.L. Jaffe, Nucl. Phys. B 536, 303 (1999).CrossRefADSGoogle Scholar
  19. 19.
    M. Wakamatsu, Phys. Rev. D 85, 114039 (2012).CrossRefADSGoogle Scholar
  20. 20.
    X. Ji, X. Xiong, F. Yuan, Phys. Rev. Lett. 109, 152005 (2012).CrossRefADSGoogle Scholar
  21. 21.
    X. Ji, Y. Xu, Y. Zhao, JHEP 1208, 082 (2012).CrossRefADSGoogle Scholar
  22. 22.
    C. Lorcé, Phys. Rev. D 87, 034031 (2013).CrossRefADSGoogle Scholar
  23. 23.
    C. Lorcé, Phys. Lett. B 719, 185 (2013).CrossRefADSGoogle Scholar
  24. 24.
    C. Lorcé, Nucl. Phys. A 925, 1 (2014).CrossRefADSGoogle Scholar
  25. 25.
    M. Wakamatsu, Phys. Rev. D 87, 094035 (2013).CrossRefADSGoogle Scholar
  26. 26.
    N. Stoilov, Bulg. J. Phys. 41, 251 (2014).Google Scholar
  27. 27.
    J. Francois, S. Lazzarini, T. Masson, Phys. Rev. D 91, 045014 (2015).CrossRefADSGoogle Scholar
  28. 28.
    X. Ji, J.H. Zhang, Y. Zhao, Phys. Rev. Lett. 111, 112002 (2013).CrossRefADSGoogle Scholar
  29. 29.
    J.C. Collins, Foundations of Perturbative QCD (Cambridge University Press, Cambridge, 2011).Google Scholar
  30. 30.
    Y. Hatta, X. Ji, Y. Zhao, Phys. Rev. D 89, 085030 (2014).CrossRefADSGoogle Scholar
  31. 31.
    A.V. Manohar, Phys. Rev. Lett. 66, 289 (1991).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    J. Kodaira, K. Tanaka, Prog. Theor. Phys. 101, 191 (1999).CrossRefADSGoogle Scholar
  33. 33.
    Y. Hatta, Phys. Rev. D 84, 041701 (2011).CrossRefADSGoogle Scholar
  34. 34.
    S.J. Van Enk, G. Nienhuis, J. Mod. Opt. 41, 963 (1994).CrossRefADSGoogle Scholar
  35. 35.
    S.J. Van Enk, G. Nienhuis, Europhys. Lett. 25, 497 (1994).CrossRefADSGoogle Scholar
  36. 36.
    S.M. Barnett, L. Allen, Opt. Commun. 110, 670 (1994).CrossRefADSGoogle Scholar
  37. 37.
    K.Y. Bliokh, M.A. Alonso, E.A. Ostrovskaya, A. Aiello, Phys. Rev. A 82, 063825 (2010).CrossRefADSGoogle Scholar
  38. 38.
    E. Leader, Phys. Lett. B 720, 120 (2013).CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Y. Hatta, K. Tanaka, S. Yoshida, JHEP 1302, 003 (2013).CrossRefADSGoogle Scholar
  40. 40.
    A. Harindranath, R. Kundu, A. Mukherjee, Phys. Lett. B 728, 63 (2014).CrossRefADSGoogle Scholar
  41. 41.
    R.L. Jaffe, Phys. Lett. B 365, 359 (1996).CrossRefADSGoogle Scholar
  42. 42.
    M.A. Berger, Plasma Phys. Control. Fusion 41, B167 (1999).CrossRefADSGoogle Scholar
  43. 43.
    M. Burkardt, Phys. Rev. D 88, 14014 (2013).CrossRefADSGoogle Scholar
  44. 44.
    Y. Hatta, Phys. Lett. B 708, 186 (2012).CrossRefADSGoogle Scholar
  45. 45.
    J.C. Collins, Phys. Lett. B 536, 43 (2002).CrossRefADSGoogle Scholar
  46. 46.
    A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003).CrossRefADSzbMATHGoogle Scholar
  47. 47.
    D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003).CrossRefADSGoogle Scholar
  48. 48.
    A.V. Efremov, O.V. Teryaev, Phys. Lett. B 150, 383 (1985).CrossRefADSGoogle Scholar
  49. 49.
    J. Qiu, G. Sterman, Phys. Rev. D 59, 014004 (1991).CrossRefADSGoogle Scholar
  50. 50.
    J. Qiu, G. Sterman, Nucl. Phys. B 378, 52 (1992).CrossRefADSGoogle Scholar
  51. 51.
    S. Meissner, A. Metz, M. Schlegel, JHEP 0908, 056 (2009).CrossRefADSGoogle Scholar
  52. 52.
    D. Sivers, Phys. Rev. D 41, 83 (1990).CrossRefADSGoogle Scholar
  53. 53.
    D. Sivers, Phys. Rev. D 43, 261 (1991).CrossRefADSGoogle Scholar
  54. 54.
    Ph. Haegler, A. Mukherjee, A. Schaefer, Phys. Lett. B 582, 55 (2004).CrossRefADSGoogle Scholar
  55. 55.
    Y. Hatta, S. Yoshida, JHEP 1210, 080 (2012).CrossRefADSGoogle Scholar
  56. 56.
    C. Lorcé, B. Pasquini, Phys. Rev. D 84, 014015 (2011).CrossRefADSGoogle Scholar
  57. 57.
    M. Penttinen, M.V. Polyakov, A.G. Shuvaev, M. Strikman, Phys. Lett. B 491, 96 (2000).CrossRefADSGoogle Scholar
  58. 58.
    D.V. Kiptily, M.V. Polyakov, Eur. Phys. J. C 37, 105 (2004).CrossRefADSGoogle Scholar
  59. 59.
    A. Courtoy, G.R. Goldstein, J.O.G. Hernandez, S. Liuti, A. Rajan, Phys. Lett. B 731, 141 (2014).CrossRefADSGoogle Scholar
  60. 60.
    A. Courtoy, G.R. Goldstein, J.O.G. Hernandez, S. Liuti, A. Rajan, arXiv:1412.0647 [hep-ph].
  61. 61.
    R.D. Amado, Phys. Rev. C 19, 1473 (1979).CrossRefADSGoogle Scholar
  62. 62.
    J.L. Friar, Phys. Rev. C 20, 325 (1979).CrossRefADSGoogle Scholar
  63. 63.
    S.K. Bogner, R.J. Furnstahl, S. Ramanan, A. Schwenk, Nucl. Phys. A 784, 79 (2007).CrossRefADSGoogle Scholar
  64. 64.
    P.G. Ratcliffe, Nucl. Phys. B 264, 493 (1986).CrossRefADSGoogle Scholar
  65. 65.
    I.I. Balitsky, V.M. Braun, Nucl. Phys. B 361, 93 (1991).CrossRefADSGoogle Scholar
  66. 66.
    H. Eguchi, Y. Koike, K. Tanaka, Nucl. Phys. B 752, 1 (2006).CrossRefADSGoogle Scholar
  67. 67.
    P. Lowdon, Nucl. Phys. B 889, 801 (2014).CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    T. Liu, B.-Q. Ma, Phys. Rev. D 91, 017501 (2015).CrossRefADSGoogle Scholar
  69. 69.
    C. Lorceé, arXiv:1502.06656 [hep-ph].

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations