Advertisement

Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell

  • Lars v.d. Wense
  • Benedict Seiferle
  • Mustapha Laatiaoui
  • Peter G. Thirolf
Regular Article - Experimental Physics

Abstract

Following the α decay of 233U, 229Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for 229Th3+ is determined via MCP-based measurements and via the direct detection of the 229Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of 229Th3+ is obtained at a mass resolution of about 1u/e. In addition to 229Th, also other α-recoil ions of the 233, 232U decay chains are addressed.

Keywords

208Pb Charge State Thorium Quadrupole Mass Spectrometer Decay Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Peik, C. Tamm, Eur. Phys. Lett. 61, 181 (2003).CrossRefADSGoogle Scholar
  2. 2.
    L.A. Kroger, C.W. Reich, Nucl. Phys. A 259, 29 (1976).CrossRefADSGoogle Scholar
  3. 3.
    R. Helmer, C.W. Reich, Phys. Rev. C 49, 1845 (1994).CrossRefADSGoogle Scholar
  4. 4.
    B.R. Beck et al., Phys. Rev. Lett. 109, 142501 (2007).CrossRefADSGoogle Scholar
  5. 5.
    F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 76, 054313 (2007).CrossRefADSGoogle Scholar
  6. 6.
    F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. At. Nucl. 69-4, 571 (2006).CrossRefGoogle Scholar
  7. 7.
    E.V. Tkalya et al., Phys. Rev. C 61, 064308 (2000).CrossRefADSGoogle Scholar
  8. 8.
    E.V. Tkalya, JETP Lett. 71-8, 311 (2000).CrossRefADSGoogle Scholar
  9. 9.
    E. Peik, in Proceedings of the 7th symposium on frequency standards and metrology, Pacific Grove CA U.S.A., October 5-11 2008, Frequency Standards and Metrology (2009) p. 532.Google Scholar
  10. 10.
    E. Swanberg et al., Am. Phys. Soc. 56, F1.00002 (2011).Google Scholar
  11. 11.
    W.G. Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010).CrossRefADSGoogle Scholar
  12. 12.
    S. Porsev et al., Phys. Rev. Lett. 105, 182501 (2010).CrossRefADSGoogle Scholar
  13. 13.
    G.A. Kazakov et al., New J. Phys. 14, 083019 (2012).CrossRefADSGoogle Scholar
  14. 14.
    S. Raeder et al., J. Phys. B 44, 165005 (2011).CrossRefADSGoogle Scholar
  15. 15.
    X. Zhao et al., Phys. Rev. Lett. 109, 160801 (2012).CrossRefADSGoogle Scholar
  16. 16.
    E. Peik, K. Zimmermann, Phys. Rev. Lett. 111, 018901 (2013).CrossRefADSGoogle Scholar
  17. 17.
    K. Zimmermann, PhD thesis, University of Hannover, Germany (2010). .Google Scholar
  18. 18.
    E. Swanberg, PhD thesis, University of California, Berkeley (2012).Google Scholar
  19. 19.
    L.v.d. Wense et al., JINST 8, P03005 (2013).CrossRefADSGoogle Scholar
  20. 20.
    J.B. Neumayr et al., Rev. Sci. Instrum. 77, 065109 (2006).CrossRefADSGoogle Scholar
  21. 21.
    J.F. Ziegler, version TRIM-2012.03 was used.Google Scholar
  22. 22.
    J.B. Neumayr, PhD thesis, Ludwig-Maximilians-Universität München, Munich, Germany (2004).Google Scholar
  23. 23.
    W.M. Brubaker, Adv. Mass Spectrom. 4, 293 (1968).Google Scholar
  24. 24.
    E. Haettner, PhD thesis, University of Giessen, Germany (2011).Google Scholar
  25. 25.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York 1985).Google Scholar
  26. 26.
    K. Nordlund, Comput. Mater. Sci. 3, 448 (1995).CrossRefGoogle Scholar
  27. 27.
    T. Hashimoto et al., J. Inorg. Nucl. Chem. 43-10, 2233 (1981).CrossRefGoogle Scholar
  28. 28.
    NNDC Interactive Chart of Nuclides, available online at http://www.nndc.bnl.gov/chart, 2014, November 26 (Brookhaven National Laboratory, Brookhaven).
  29. 29.
    H. Bateman, Proc. Cambridge Phil. Soc. 15, 423 (1910).zbMATHGoogle Scholar
  30. 30.
    J. Magill, J. Galy, Radioactivity Radionuclides Radiation (Springer-Verlag, Berlin Heidelberg, 2005) p. 47.Google Scholar
  31. 31.
    S.E. Taylor et al., Phys. Chem. Chem. Phys. 10, 422 (2008).CrossRefGoogle Scholar
  32. 32.
    H. Matzke, Radiat. Effects 53, 219 (1980).CrossRefGoogle Scholar
  33. 33.
    A. Fick, Philos. Mag. 10, 30 (1855).Google Scholar
  34. 34.
    V. Sonnenschein et al., Eur. Phys. J. A 48, 52 (2012).CrossRefADSGoogle Scholar
  35. 35.
    J. Oberheide et al., Meas. Sci. Technol. 8, 351 (1997).CrossRefADSGoogle Scholar
  36. 36.
    A. Kramida, Yu. Ralchenko, J. Reader, NIST Atomic Spectra Database (ver. 5.2), available online athttp://physics nist.gov/asd, 2014, November 26 (National Institute of Standards and Technology, Gaithersburg, MD).
  37. 37.
    Yu. Kudryavtsev et al., Nucl. Instrum. Methods Phys. Res. B 179, 412 (2001).CrossRefADSGoogle Scholar
  38. 38.
    R. Johnsen et al., J. Phys. Chem. 61, 5404 (1974).CrossRefGoogle Scholar
  39. 39.
    C.J. Campbell et al., Phys. Rev. Lett. 106, 223001 (2011).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lars v.d. Wense
    • 1
  • Benedict Seiferle
    • 1
  • Mustapha Laatiaoui
    • 2
    • 3
  • Peter G. Thirolf
    • 1
  1. 1.Ludwig-Maximilians-Universität MünchenGarchingGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Helmholtz Institut MainzMainzGermany

Personalised recommendations