Advertisement

12C+p resonant elastic scattering in the Maya active target

  • S. Sambi
  • R. Raabe
  • M. J. G. Borge
  • M. Caamano
  • S. Damoy
  • B. Fernández-Domínguez
  • F. Flavigny
  • H. Fynbo
  • J. Gibelin
  • G. F. Grinyer
  • A. Heinz
  • B. Jonson
  • M. Khodery
  • T. Nilsson
  • R. Orlandi
  • J. Pancin
  • D. Perez-Loureiro
  • G. Randisi
  • G. Ribeiro
  • T. Roger
  • D. Suzuki
  • O. Tengblad
  • R. Thies
  • U. Datta
Special Article - Tools for Experiment and Theory

Abstract

In a proof-of-principle measurement, the Maya active target detector was employed for a 12C(p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in 13N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in 13N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance.

Keywords

Active Target Inverse Kinematic Drift Time Drift Chamber Recoil Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Bohr, Nature 137, 344 (1936).CrossRefADSzbMATHGoogle Scholar
  2. 2.
    G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936).CrossRefADSzbMATHGoogle Scholar
  3. 3.
    G. Goldhaber, R. Williamson, Phys. Rev. 82, 495 (1951).CrossRefADSGoogle Scholar
  4. 4.
    S. Darden et al., Nucl. Phys. A 429, 218 (1984).CrossRefADSGoogle Scholar
  5. 5.
    K.P. Artemov et al., Sov. J. Nucl. Phys. 52, 406 (1990).Google Scholar
  6. 6.
    C. Angulo et al., Nucl. Phys. A 716, 211 (2003).CrossRefADSGoogle Scholar
  7. 7.
    J.J. He et al., Phys. Rev. C 88, 012801 (2013).CrossRefADSGoogle Scholar
  8. 8.
    J. Chen et al., Phys. Rev. C 85, 015805 (2012).CrossRefADSGoogle Scholar
  9. 9.
    J.J. He et al., Eur. Phys. J. A 47, 67 (2011).CrossRefADSGoogle Scholar
  10. 10.
    Y. Wang et al., Nucl. Phys. A 834, 100c (2010).CrossRefADSGoogle Scholar
  11. 11.
    G.V. Rogachev et al., Phys. Rev. C 67, 041603 (2003).CrossRefADSGoogle Scholar
  12. 12.
    W. Mittig et al., Nucl. Phys. A 722, C10 (2003).CrossRefADSGoogle Scholar
  13. 13.
    C.E. Demonchy et al., Nucl. Instrum. Methods Phys. Res. A 573, 145 (2007).CrossRefADSGoogle Scholar
  14. 14.
    M. Caamaño et al., Phys. Rev. C 78, 044001 (2008).CrossRefADSGoogle Scholar
  15. 15.
    I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008).CrossRefADSGoogle Scholar
  16. 16.
    T. Roger et al., Phys. Rev. C 79, 031603 (2009).CrossRefADSGoogle Scholar
  17. 17.
    C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008).CrossRefADSGoogle Scholar
  18. 18.
    M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014).CrossRefADSGoogle Scholar
  19. 19.
    T. Roger, PhD thesis, Université de Caen/Basse Normandie (2009).Google Scholar
  20. 20.
    D. Suzuki et al., Phys. Rev. C 87, 054301 (2013).CrossRefADSGoogle Scholar
  21. 21.
    P. Van Duppen, K. Riisager, J. Phys. G: Nucl. Part. Phys. 38, 024005 (2011).CrossRefADSGoogle Scholar
  22. 22.
    H.L. Jackson, A.I. Galonsky, Phys. Rev. 89, 370 (1953).CrossRefADSGoogle Scholar
  23. 23.
    J.C. Armstrong et al., Phys. Rev. 144, 823 (1966).CrossRefADSGoogle Scholar
  24. 24.
    H.O. Meyer, G.R. Plattner, I. Sick, Z. Phys. A 279, 41 (1976).CrossRefADSGoogle Scholar
  25. 25.
    D. Habs et al., Hyperfine Interact. 129, 43 (2000).CrossRefADSGoogle Scholar
  26. 26.
    F. Wenander, JINST 5, C10004 (2010).CrossRefADSGoogle Scholar
  27. 27.
    D. Voulot et al., Nucl. Instrum. Methods Phys. Res. B 266, 4103 (2008).CrossRefADSGoogle Scholar
  28. 28.
    T. Roger et al., Nucl. Instrum. Methods Phys. Res. A 638, 134 (2011).CrossRefADSGoogle Scholar
  29. 29.
    C. Demonchy, PhD thesis, Université de Caen/Basse Normandie (2003). .Google Scholar
  30. 30.
    J.-C. Santiard, CERN-ECP-94-17 (1994).Google Scholar
  31. 31.
    M. Caamano Fresco, PhD thesis, Universidade de Santiago de Compostela (2006).Google Scholar
  32. 32.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
  33. 33.
    S. Sambi, PhD thesis, KU Leuven (2015).Google Scholar
  34. 34.
    A. Lane, R. Thomas, Rev. Mod. Phys. 30, 257 (1958).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    A.F. Gurbich, Nucl. Instrum. Methods Phys. Res. B 136, 60 (1998).CrossRefADSGoogle Scholar
  37. 37.
    A.F. Gurbich, Nucl. Instrum. Methods Phys. Res. B 152, 403 (1999).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Sambi
    • 1
  • R. Raabe
    • 1
  • M. J. G. Borge
    • 2
  • M. Caamano
    • 3
  • S. Damoy
    • 4
  • B. Fernández-Domínguez
    • 3
  • F. Flavigny
    • 1
  • H. Fynbo
    • 5
  • J. Gibelin
    • 6
  • G. F. Grinyer
    • 4
  • A. Heinz
    • 7
  • B. Jonson
    • 7
  • M. Khodery
    • 1
  • T. Nilsson
    • 7
  • R. Orlandi
    • 1
    • 8
    • 9
  • J. Pancin
    • 4
  • D. Perez-Loureiro
    • 4
  • G. Randisi
    • 1
    • 4
  • G. Ribeiro
    • 8
  • T. Roger
    • 4
  • D. Suzuki
    • 10
  • O. Tengblad
    • 8
  • R. Thies
    • 7
  • U. Datta
    • 11
  1. 1.Instituut voor Kern- en Stralingsfysica, Physics DepartmentKU LeuvenLeuvenBelgium
  2. 2.PH DepartmentCERNGenevaSwitzerland
  3. 3.Department of Particle PhysicsUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.Grand Accelerateur National d’Ion Lourds (GANIL)CEA/DSM - CNRS/IN2P3CaenFrance
  5. 5.Department of Physics and AstronomyAarhus UniversityAarhusDenmark
  6. 6.LPC Caen, ENSICAENUniversité de Caen, CNRS/IN2P3Caen CedexFrance
  7. 7.Department of PhysicsChalmers University of TechnologyGoteborgSweden
  8. 8.Instituto de Estructura de la Materia CSICMadridSpain
  9. 9.ASRCJAEATokai-muraJapan
  10. 10.Institut de Physique Nucleaire, CNRS/IN2P3Universite Paris-SudOrsayFrance
  11. 11.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations