Studies of continuum states in 16 Ne using three-body correlation techniques

  • J. Marganiec
  • F. Wamers
  • F. Aksouh
  • Yu. Aksyutina
  • H. Álvarez-Pol
  • T. Aumann
  • S. Beceiro-Novo
  • K. Boretzky
  • M. J. G. Borge
  • M. Chartier
  • A. Chatillon
  • L. V. Chulkov
  • D. Cortina-Gil
  • H. Emling
  • O. Ershova
  • L. M. Fraile
  • H. O. U. Fynbo
  • D. Galaviz
  • H. Geissel
  • M. Heil
  • D. H. H. Hoffmann
  • J. Hoffmann
  • H. T. Johansson
  • B. Jonson
  • C. Karagiannis
  • O. A. Kiselev
  • J. V. Kratz
  • R. Kulessa
  • N. Kurz
  • C. Langer
  • M. Lantz
  • T. Le Bleis
  • R. Lemmon
  • Yu. A. Litvinov
  • K. Mahata
  • C. Müntz
  • T. Nilsson
  • C. Nociforo
  • G. Nyman
  • W. Ott
  • V. Panin
  • S. Paschalis
  • A. Perea
  • R. Plag
  • R. Reifarth
  • A. Richter
  • C. Rodriguez-Tajes
  • D. Rossi
  • K. Riisager
  • D. Savran
  • G. Schrieder
  • H. Simon
  • J. Stroth
  • K. Sümmerer
  • O. Tengblad
  • H. Weick
  • M. Wiescher
  • C. Wimmer
  • M. V. Zhukov
Regular Article - Experimental Physics

Abstract.

Two-proton decay of the unbound \( T_{z} =-2\) nucleus 16Ne , produced in one-neutron knockout from a 500 MeV/u 17Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, ( \( \Gamma =0.082(15)\) MeV) above the 14O +p+p threshold, and two narrow resonances at \( E_{r} =3.220(46)\) MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2+ state and the 0+ ground state in 16Ne with its mirror nucleus 16C reveals a small Thomas-Ehrman shift (TES) of \( +70(46)\) keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for 16F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the 14O +p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the intermediate nucleus 15F , the 3.22 MeV state predominantly via the 15F ground-state resonance, while the 7.57 MeV state decays via the 5/2+ resonance in 15F at 2.8 MeV above the 14O +p+p threshold. Further, from an analysis of angular correlations, the spin-parity of the 7.57 MeV state has been determined as \( I^{\pi} =2^{+}\) and assigned as the third 2+ state in 16Ne based on a comparison with 16C.

References

  1. 1.
    F. Wamers et al., Phys. Rev. Lett. 112, 132502 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Holt et al., Phys. Lett. B 68, 55 (1977)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    G.R. Burleson et al., Phys. Rev. C 22, 1180 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    K. Föhl et al., Phys. Rev. Lett. 79, 3849 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    G.J. KeKelis et al., Phys. Rev. C 17, 1929 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    C.J. Woodward, R.E. Tribble, D.M. Tanner, Phys. Rev. C 27, 27 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    I. Mukha et al., Phys. Rev. C 79, 061301 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    I. Mukha et al., Phys. Rev. C 82, 054315 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K.W. Brown, arXiv:1406.3285v2 [nucl-ex] (2014).
  10. 10.
    V. Guimarães et al., Phys. Rev. 58, 117 (1998)CrossRefGoogle Scholar
  11. 11.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    L.V Grigorenko et al., Phys. Rev. Lett. 88, 042502 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Petri et al., Phys. Rev. C 86, 044329 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A.H. Wuosmaa et al., Phys. Rev. Lett. 105, 132501 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Satou et al., Phys. Lett. B 728, 462 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ogawa et al., Phys. Lett. B 464, 157 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    R.G. Thomas, Phys. Rev. 88, 1109 (1952)ADSCrossRefMATHGoogle Scholar
  18. 18.
    J.B. Ehrman, Phys. Rev. 81, 412 (1951)ADSCrossRefGoogle Scholar
  19. 19.
    H.T. Fortune, Phys. Lett. B 718, 1342 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E. Comay, I. Kelson, A. Zidon, Phys. Lett. B 210, 31 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    S. Aoyama, Phys. Rev. C 62, 034305 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Rev. C 69, 024002 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    F.C. Barker, Phys. Rev. C 59, 535 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    D.F. Geesaman et al., Phys. Rev. C 15, 1835 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 68, 054005 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    V.Z. Goldberg et al., Phys. Rev. C 69, 031302 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A. Lepine-Szily et al., Nucl. Phys. A 734, 331 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    F.Q. Guo et al., Phys. Rev. C 72, 034312 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    R.I. Jibuti, N.B. Krupennikova, V.Yu. Tomchinsky, Nucl. Phys. A 276, 421 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    N.K. Timofeyuk, P. Descouvemont, Phys. Rev. C 81, 051301 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    H.T. Fortune, R. Sherr, Phys. Rev. C 87, 057308 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A. Negret et al., Phys. Rev. C 71, 047303 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    H.T. Fortune, R. Sherr, Phys. Rev. C 82, 027310 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M. MacCormik, G. Audi, Nucl. Phys. A 925, 61 (2014) 925ADSCrossRefGoogle Scholar
  35. 35.
    Y.H. Lam et al., At. Nucl. Data Tables 99, 680 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M. Wang et al., Chin. Phys. C 36, 1603 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    H.T. Fortune, Phys. Rev. C 74, 054310 (2006)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Marganiec
    • 1
    • 2
    • 3
  • F. Wamers
    • 1
    • 2
    • 3
    • 4
  • F. Aksouh
    • 2
  • Yu. Aksyutina
    • 2
  • H. Álvarez-Pol
    • 5
  • T. Aumann
    • 1
    • 2
  • S. Beceiro-Novo
    • 5
  • K. Boretzky
    • 2
  • M. J. G. Borge
    • 6
    • 7
  • M. Chartier
    • 8
  • A. Chatillon
    • 2
  • L. V. Chulkov
    • 2
    • 9
  • D. Cortina-Gil
    • 5
  • H. Emling
    • 2
  • O. Ershova
    • 2
    • 10
  • L. M. Fraile
    • 11
  • H. O. U. Fynbo
    • 12
  • D. Galaviz
    • 7
  • H. Geissel
    • 2
  • M. Heil
    • 2
  • D. H. H. Hoffmann
    • 1
  • J. Hoffmann
    • 2
  • H. T. Johansson
    • 13
  • B. Jonson
    • 13
  • C. Karagiannis
    • 2
  • O. A. Kiselev
    • 2
  • J. V. Kratz
    • 14
  • R. Kulessa
    • 15
  • N. Kurz
    • 2
  • C. Langer
    • 2
    • 10
  • M. Lantz
    • 16
  • T. Le Bleis
    • 2
    • 17
  • R. Lemmon
    • 18
  • Yu. A. Litvinov
    • 2
  • K. Mahata
    • 2
    • 19
  • C. Müntz
    • 2
  • T. Nilsson
    • 13
  • C. Nociforo
    • 2
  • G. Nyman
    • 13
  • W. Ott
    • 2
  • V. Panin
    • 1
    • 2
  • S. Paschalis
    • 1
    • 8
  • A. Perea
    • 7
  • R. Plag
    • 2
    • 10
  • R. Reifarth
    • 2
    • 10
  • A. Richter
    • 1
  • C. Rodriguez-Tajes
    • 5
  • D. Rossi
    • 2
  • K. Riisager
    • 12
  • D. Savran
    • 3
    • 4
  • G. Schrieder
    • 1
  • H. Simon
    • 2
  • J. Stroth
    • 10
  • K. Sümmerer
    • 2
  • O. Tengblad
    • 7
  • H. Weick
    • 2
  • M. Wiescher
    • 20
  • C. Wimmer
    • 2
    • 10
  • M. V. Zhukov
    • 13
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.ExtreMe Matter Institute EMMIResearch Division GSIDarmstadtGermany
  4. 4.Frankfurt Institute for Advanced Studies FIASFrankfurt am MainGermany
  5. 5.Grupo de Física NuclearUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  6. 6.ISOLDE-EPCERNGenevaSwitzerland
  7. 7.Instituto de Estructura de la MateriaCSICMadridSpain
  8. 8.Department of PhysicsUniversity of LiverpoolLiverpoolUK
  9. 9.Kurchatov InstituteMoscowRussia
  10. 10.Institut für Angewandte PhysikGoethe UniversitätFrankfurt am MainGermany
  11. 11.Grupo de Física Nuclear, FAMNUniversidad Complutense de Madrid, CEI MoncloaMadridSpain
  12. 12.Department of Physics and AstronomyUniversity of AarhusAarhusDenmark
  13. 13.Fundamental FysikChalmers Tekniska HögskolaGöteborgSweden
  14. 14.Institut für KernchemieJohannes Gutenberg-Universität MainzMainzGermany
  15. 15.Instytut FizykiUniwersytet JagellońskiKrakóvPoland
  16. 16.Institutionen för fysik och astronomiUppsala UniversitetUppsalaSweden
  17. 17.Physik-Department E12Technische Universität MünchenGarchingGermany
  18. 18.Nuclear Physics GroupSTFC Daresbury Lab, WarringtonCheshireUK
  19. 19.Nuclear Physics DivisionBhabha Atomic Research CentreTrombayIndia
  20. 20.JINAUniversity of Notre DameNotre DameUSA
  21. 21.Dept of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhKSA
  22. 22.National Superconducting Cyclotron LaboratoryMSUEast LansingUSA

Personalised recommendations