Effects of single-particle potentials on the level density parameter

  • B. CanbulaEmail author
  • R. Bulur
  • D. Canbula
  • H. Babacan
Regular Article - Theoretical Physics


The new definition of the energy dependence for the level density parameter including collective effects depends strongly on the semi-classical approach. For this method, defining an accurate single-particle potential is of great importance. The effect of the single-particle potential terms, which are central, spin-orbit, harmonic oscillator, Woods-Saxon and Coulomb potential, both for spherical and deformed cases, on the level density parameter was investigated by examining the local success of the global parameterizations of eight different combinations of these terms. Among these combinations, the sum of the central, spin-orbit, harmonic oscillator and Coulomb potentials, gives the most accurate predictions compared with experimental data. The local selections of the global parameterizations show that the single-particle models, which are based on the Woods-Saxon potential as the main term, are more suitable candidates than the models based on harmonic oscillator potential to extrapolate away far from stability. Also it can be concluded that the contribution of the Coulomb interaction, both around the closed and open shells is not neglectable.


Level Density Global Parameterization Local Selection Superheavy Nucleus Harmonic Oscillator Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Tanihata, H. Hamakagi, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983).Google Scholar
  3. 3.
    T. Tamura, Rev. Mod. Phys. 37, 679 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    W. Tobocman, M.H. Kalos, Phys. Rev. 97, 132 (1955).ADSCrossRefGoogle Scholar
  5. 5.
    G.H. Rawitscher, Phys. Rev. C 9, 2210 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. 68, 322 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. Suppl. 89, 136 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yamagata, K. Yuasa, N. Inabe, M. Nakamura, M. Tanaka, S. Nakayama, K. Katori, M. Inoue, S. Kubono, T. Itahashi, H. Ogata, Y. Sakuragi, Phys. Rev. C 39, 873 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    B. Sinha, Phys. Rep. 20, 1 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    V. Lapoux et al., Phys. Lett. B 658, 198 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    B. Canbula, R. Bulur, D. Canbula, H. Babacan, Nucl. Phys. A 929, 54 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    B. Canbula, H. Babacan, Nucl. Phys. A 858, 32 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937).ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    H. Hagelund, A.S. Jensen, Phys. Scr. 15, 225 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Ignatyuk, The Statical Properties of the Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983).Google Scholar
  18. 18.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).CrossRefGoogle Scholar
  19. 19.
    A. Mengoni, Y. Nakajima, J. Nucl. Sci. Techmol. 31, 151 (1994).CrossRefGoogle Scholar
  20. 20.
    D.J. Rowe, Nuclear Collective Motion (Methuen, London, 1970).Google Scholar
  21. 21.
    K.S. Krane, Introductory Nuclear Physics (John Wiley and Sons Inc., 1987).Google Scholar
  22. 22.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, 1980).Google Scholar
  23. 23.
    K. Siegbahn, Alpha-, Beta- and Gamma-Ray Spectroscopy (North-Holland, 1965).Google Scholar
  24. 24.
    T. Ericson, Adv. Phys. 9, 425 (1960).ADSCrossRefGoogle Scholar
  25. 25.
    J. Bartel, K. Pomorski, B. Nerlo-Pomorska, Int. J. Mod. Phys. E 15, 478 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    A.S. Iljinov, M.V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A.R. Reolon, P. Rossi, Nucl. Phys. A 543, 517 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    A. Bohr, B.R. Mottelson, Nuclear Structure (W. A. Benjamin, Inc., 1998). .Google Scholar
  28. 28.
    M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley Publishing Company, Inc., 1997).Google Scholar
  29. 29.
    L. Salasnich, J. Math. Phys. 41, 8016 (2000).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    W. Greiner, J.A. Maruhn, Nuclear Models (Springer-Verlag, 1996).Google Scholar
  31. 31.
    T. Bayram, S. Akkoyun, S.O. Kara, A. Sinan, Acta Phys. Pol. B 44, 1971 (2013).CrossRefGoogle Scholar
  32. 32.
    I. Angeli, K.P. Marinova, At. Nucl. Data Tables 99, 69 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).Google Scholar
  34. 34.
    P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesCelal Bayar UniversityManisaTurkey

Personalised recommendations