Advertisement

Nuclear structure of N = 86 isotones of Ce, Nd, Sm and Gd

  • J. B. GuptaEmail author
Regular Article - Theoretical Physics

Abstract

The collectivity in the low-energy spectra of N = 86 isotones of Ce, Nd, Sm and Gd is studied vis-à-vis their vibrational band structure. The energy level pattern and the E2 transition rates are compared with the predictions of the microscopic dynamic pairing plus quadrupole model plus 5DCH (Bohr-Mottelson view). The role of the Z = 64 subshell in the increase of ground band level energies with increasing Z , and the different effects on the B(E2) values are illustrated. The subshell energy gap versus the occupation of Nilsson single-particle orbits is discussed. A brief discussion of the different current microscopic collective models is also given.

Keywords

Potential Energy Surface Interact Boson Model Ground Band Inert Core Anharmonic Vibrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brookhaven National Laboratory, Chart of nuclides of National Nuclear Data Center, www.nndc.bnl.gov.nsdf.
  2. 2.
    I. Talmi, Nucl. Phys. A 172, 1 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, N.Y. 1975).Google Scholar
  4. 4.
    R.F. Casten, N.V. Zamfir, D.S. Brenner, Phys. Rev. Lett. 71, 227 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    R.F. Casten, D.D. Warner, D.S. Brenner, R.L. Gill, Phys. Rev. Lett. 47, 1433 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).Google Scholar
  7. 7.
    J.B. Gupta, Phys. Rev. C 87, 064318 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    J.B. Gupta, Phys. Rev. C 89, 034321 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    E. Michelakakis, W.D Hamilton, P. Hungerford, G. Jung, P. Pfeiffer, S.M. Scott, J. Phys. G Nucl. Phys. 8, 11 (1982).CrossRefGoogle Scholar
  10. 10.
    E. Veje, B. Elbek, G. Herskind, M.C. Olesen, Nucl. Phys. A 109, 489 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Ikeda H. Yamamoto, K. Kawade, T. Katoh, T. Nagahara, J. Phys. Soc. Jpn. 45, 725 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Snelling, W.D. Hamilton, J. Phys. G Nucl. Phys. 9, 111 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Haenni, T.T. Sughihara, Phys. Rev. C 16, 1129 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    K. Kumar, M. Baranger, Nucl. Phys. A 110, 529 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    K. Kumar, in The electromagnetic interactions in nuclear spectroscopy, edited by W.D. Hamilton (NH, 1975) chapt. 3.Google Scholar
  16. 16.
    T.J. Al-Janabi, J.D. Jafar, H.M. Youhana, A.M. Demidov, L.I. Govor, J. Phys. G Part. Phys. 9, 779 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    D.F. Coope, S.N. Tripathi, M.C. Shell, J.L. Weil, M.T. McEllistrem, Phys. Rev. C 16, 2223 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    L. Grodzins, Phys. Lett. 2, 88 (1962).ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958).CrossRefGoogle Scholar
  20. 20.
    S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    E. Veje, B. Elbek, B. Herskind, M.C. Olesen, Nucl. Phys. A 109, 489 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    R.K. Sheline, Rev. Mod. Phys. 32, 1 (1960).ADSCrossRefGoogle Scholar
  23. 23.
    G. Alaga, K. Alder, A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk 29, 9 (1955).Google Scholar
  24. 24.
    G. Gneus, W. Greiner, Nucl. Phys. A 171, 449 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    W.D. Hamilton, K. Kumar, J. Phys. G Nucl. Phys. 5, 1567 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    K. Kumar, Nuclear models and search for unity in nuclear Physics (Universitetsforlaget, Bergen, 1984).Google Scholar
  27. 27.
    H. Watanbe et al., Phys. Lett. B 704, 270 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    I. Prochniak, S.G. Rohozinski, J. Phys. G Nucl. Part. Phys. 36, 123101 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    T. Niksic, P. Ring, D. Vretenar, Yuan Tian, Zhong-yu Ma, Phys. Rev. C 81, 054318 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    J.B. Gupta, Phys. Rev. C 47, 1489 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    J.B. Gupta, K. Kumar, Nucl. Phys. A 882, 21 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    J.B. Gupta, Eur. Phys. J. A 49, 126 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    J.B. Gupta, Nucl. Phys. A 927, 53 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    K. Kumar, J.B. Gupta, J.H. Hamilton, Austr. J. Phys. 32, 307 (1979).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ramjas CollegeUniversity of DelhiDelhiIndia

Personalised recommendations