Advertisement

Properties of effective massive Yang-Mills theory in the limit of vanishing vector boson mass

  • J. GegeliaEmail author
  • U. -G. Meißner
Regular Article - Theoretical Physics

Abstract

Two-loop corrections to the pole mass of the vector boson and the pole masses and the magnetic moments of fermions are calculated in the framework of an effective field theory of massive Yang-Mills fields interacting with fermions. It is shown that the limit of vanishing vector boson mass is finite for all these quantities. Implications of the obtained results are discussed.

Keywords

Vector Boson Inverse Power Pole Mass Massless Limit Massless Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Weinberg, The Quantum Theory Of Fields. Vols. 1,2: Foundations, Modern applications (Cambridge University Press, Cambridge, 1995).Google Scholar
  2. 2.
    D.G. Boulware, Ann. Phys. 56, 140 (1970).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    A.A. Slavnov, L.D. Faddeev, Theor. Math. Phys. 3, 312 (1970).CrossRefGoogle Scholar
  4. 4.
    R. Ferrari, Acta Phys. Pol. B 44, 1871 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    M. Della Morte, P. Hernandez, JHEP 11, 213 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    J. Gegelia, G. Japaridze, Mod. Phys. Lett. A 27, 1250128 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A.I. Vainshtein, I.B. Khriplovich, Yad. Fiz. 13, 198 (1971).Google Scholar
  8. 8.
    U.-G. Meißner, Phys. Rep. 161, 213 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Collins, Renormalization. An introduction to renormalization, the renormalization group, and the operator product expansion (Cambridge University Press, Cambridge, 1984).Google Scholar
  10. 10.
    N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher, Z. Phys. C 48, 673 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    J. Fleischer, F. Jegerlehner, O.V. Tarasov, O.L. Veretin, Nucl. Phys. B 539, 671 (1999) 571.ADSCrossRefGoogle Scholar
  12. 12.
    J. Gegelia, G.S. Japaridze, K.S. Turashvili, Theor. Math. Phys. 101, 1313 (1994) (Teor. Mat. Fiz. 101.CrossRefGoogle Scholar
  13. 13.
    C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    G.S. Japaridze, K.S. Turashvili, Int. J. Theor. Phys. 37, 865 (1998).CrossRefGoogle Scholar
  15. 15.
    H. van Dam, M.J.G. Veltman, Nucl. Phys. B 22, 397 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    V.I. Zakharov, JETP Lett. 12, 312 (1970) (Pisma Zh. Eksp. Teor. Fiz. 12.ADSGoogle Scholar
  17. 17.
    D. Djukanovic, J. Gegelia, S. Scherer, Int. J. Mod. Phys. A 25, 3603 (2010).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    J. Gegelia, arXiv:1207.0156 [hep-ph].
  19. 19.
    C.H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. Lett. 30, 1268 (1973) 31.ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974) 11.ADSCrossRefGoogle Scholar
  22. 22.
    S.D. Joglekar, Ann. Phys. 83, 427 (1974).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochumGermany
  2. 2.Tbilisi State UniversityTbilisiGeorgia
  3. 3.Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  4. 4.Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron PhysicsForschungszentrum JülichJülichGermany

Personalised recommendations