Advertisement

Nucleon magnetic form factors with non-local chiral effective Lagrangian

Regular Article - Theoretical Physics

Abstract

Chiral perturbation theory is a useful method to investigate the hadron properties. We apply the non-local chiral effective Lagrangian to study the nucleon magnetic form factors. The octet and decuplet intermediate states are included in the one-loop calculation. With the modified propagators and non-local interaction, the loop integral is convergent. The obtained proton and neutron magnetic form factors are both reasonable up to relatively large Q 2.

Keywords

Form Factor Heavy Baryon Magnetic Form Factor Nucleon Form Factor Baryon Octet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.H. Lu, A.W. Thomas, A.G. Williams, Phys. Rev. C 57, 2628 (1998) arXiv:nucl-th/9706019.ADSCrossRefGoogle Scholar
  2. 2.
    K. Berger, R.F. Wagenbrunn, W. Plessas, Phys. Rev. D 70, 094027 (2004) arXiv:nucl-th/0407009.ADSCrossRefGoogle Scholar
  3. 3.
    B. Julia-Diaz, D.O. Riska, F. Coester, Phys. Rev. C 69, 035212 (2004) 75.ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Buchmann, R.F. Lebed, Phys. Rev. D 67, 016002 (2003) arXiv:hep-ph/0207358.ADSCrossRefGoogle Scholar
  5. 5.
    S. Cheedket, V.E. Lyubovitskij, T. Gutsche, A. Faessler, K. Pumsa-ard, Y. Yan, Eur. Phys. J. A 20, 317 (2004) arXiv:hep-ph/0212347.ADSCrossRefGoogle Scholar
  6. 6.
    Amand Faessler, T. Gutsche, M.A. Ivanov, Valery E. Lyubovitskij, P. Wang, Phys. Rev. D 68, 014011 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    R.A. Williams, C. Puckett-Truman, Phys. Rev. C 53, 1580 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    G. Hellstern, C. Weiss, Phys. Lett. B 351, 64 (1995) arXiv:hep-ph/9502217.ADSCrossRefGoogle Scholar
  9. 9.
    M. Oettel, G. Hellstern, R. Alkofer, H. Reinhardt, Phys. Rev. C 58, 2459 (1998) arXiv:nucl-th/9805054.ADSCrossRefGoogle Scholar
  10. 10.
    R. Alkofer, A. Holl, M. Kloker, A. Krassnigg, C.D. Roberts, Few-Body Syst. 37, 1 (2005) arXiv:nucl-th/ 0412046.ADSCrossRefGoogle Scholar
  11. 11.
    G. Eichmann, A. Krassnigg, M. Schwinzerl, R. Alkofer, arXiv:0712.2666 [hep-ph].
  12. 12.
    A. Lenz, M. Wittmann, E. Stein, Phys. Lett. B 581, 199 (2004) hep-ph/0311082.ADSCrossRefGoogle Scholar
  13. 13.
    V.M. Braun, A. Lenz, N. Mahnke, E. Stein, Phys. Rev. D 65, 074011 (2002) hep-ph/0112085.ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Zanotti, D.B. Leinweber, A.G. Williams, J.B. Zhang, Nucl. Phys. Proc. Suppl. 129, 287 (2004) arXiv:hep-lat/0309186.ADSCrossRefGoogle Scholar
  15. 15.
    S. Boinepalli, D.B. Leinweber, A.G. Williams, J.M. Zanotti, J.B. Zhang, Phys. Rev. D 74, 093005 (2006) arXiv:hep-lat/0604022.ADSCrossRefGoogle Scholar
  16. 16.
    C. Alexandrou, G. Koutsou, J.W. Negele, A. Tsapalis, Phys. Rev. D 74, 034508 (2006) arXiv:hep-lat/0605017.ADSCrossRefGoogle Scholar
  17. 17.
    QCDSF Collaboration (M. Gockeler et al.), Phys. Rev. D 71, 034508 (2005) arXiv:hep-lat/0303019.ADSCrossRefGoogle Scholar
  18. 18.
    M. Gockeler et al., Eur. Phys. J. A 32, 445 (2007) arXiv:hep-lat/0609001.ADSCrossRefGoogle Scholar
  19. 19.
    QCDSF/UKQCD Collaboration (M. Gockeler et al.), PoS LAT2007, 161 (2007) arXiv:0710.2159 [hep-lat].Google Scholar
  20. 20.
    LHPC Collaboration (R.G. Edwards et al.), PoS LAT2005, 056 (2006) arXiv:hep-lat/0509185.Google Scholar
  21. 21.
    Lattice Hadron Physics Collaboration (C. Alexandrou et al.), J. Phys. Conf. Ser. 16, 174 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    S.J. Puglia, M.J. Ramsey-Musolf, S.L. Zhu, Phys. Rev. D 63, 034014 (2001) arXiv:hep-ph/0008140.ADSCrossRefGoogle Scholar
  23. 23.
    T. Fuchs, J. Gegelia, S. Scherer, J. Phys. G 30, 1407 (2004) arXiv:nucl-th/0305070.ADSCrossRefGoogle Scholar
  24. 24.
    B. Kubis, U.G. Meissner, Eur. Phys. J. C 18, 747 (2001) arXiv:hep-ph/0010283.ADSCrossRefGoogle Scholar
  25. 25.
    B. Kubis, U.G. Meissner, Nucl. Phys. A 679, 698 (2001) arXiv:hep-ph/0007056.ADSCrossRefGoogle Scholar
  26. 26.
    U.-G. Meissner, S. Steininger, Nucl. Phys. B 499, 349 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    T.R. Hemmert, U.-G. Meissner, S. Steininger, Phys. Lett. B 437, 184 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    M.R. Schindler, J. Gegelia, S. Scherer, Eur. Phys. J. A 26, 1 (2005) arXiv:nucl-th/0509005.ADSCrossRefGoogle Scholar
  29. 29.
    D.B. Leinweber, D.H. Lu, A.W. Thomas, Phys. Rev. D 60, 034014 (1999) arXiv:hep-lat/9810005.ADSCrossRefGoogle Scholar
  30. 30.
    D.B. Leinweber, A.W. Thomas, K. Tsushima, S.V. Wright, Phys. Rev. D 61, 074502 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004) arXiv:hep-lat/0302020.ADSCrossRefGoogle Scholar
  32. 32.
    C.R. Allton, W. Armour, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Lett. B 628, 125 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    W. Armour et al., J. Phys. G 32, 971 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    R.D. Young, D.B. Leinweber, A.W. Thomas, Phys. Rev. D 71, 014001 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    P. Wang, A.W. Thomas, D.B. Leinweber, R.D. Young, Phys. Rev. D 75, 073012 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    D.B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2005) arXiv:hep-lat/0406002.ADSCrossRefGoogle Scholar
  37. 37.
    D.B. Leinweber et al., Phys. Rev. Lett. 97, 022001 (2006) arXiv:hep-lat/0601025.ADSCrossRefGoogle Scholar
  38. 38.
    P. Wang, A.W. Thomas, D.B. Leinweber, R.D. Young, Phys. Rev. D 79, 094001 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    P. Wang, A.W. Thomas, D.B. Leinweber, R.D. Young, Phys. Rev. C 79, 065202 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    P. Wang, A.W. Thomas, Phys. Rev. D 81, 114015 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    P. Wang, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. D 86, 094038 (2012).ADSCrossRefGoogle Scholar
  42. 42.
    P. Wang, Chin. Phys. C 35, 223 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    P. Wang, Can. J. Phys. 92, 25 (2014).CrossRefGoogle Scholar
  44. 44.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991).ADSCrossRefGoogle Scholar
  45. 45.
    V. Bernard, N. Kaiser, J. Kambor, U.G. Meissner, Nucl. Phys. B 388, 315 (1992).ADSCrossRefGoogle Scholar
  46. 46.
    V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008) arXiv: 0706.0312 [hep-ph].ADSCrossRefGoogle Scholar
  47. 47.
    P. Ha, L. Durand, Phys. Rev. D 58, 093008 (1998).ADSCrossRefGoogle Scholar
  48. 48.
    P. Ha, L. Durand, Phys. Rev. D 67, 073017 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    E. Jenkins, M. Luke, A.V. Manohar, M.J. Savage, Phys. Lett. B 302, 482 (1993) 388.ADSCrossRefGoogle Scholar
  50. 50.
    P. Wang, D.B. Lerinweber, A.W. Thomas, Phys. Rev. D 89, 033008 (2014).ADSCrossRefGoogle Scholar
  51. 51.
    H.H. Matevosyan, W. Bentz, I.C. Cloet, A.W. Thomas, Phys. Rev. D 85, 014021 (2012).ADSCrossRefGoogle Scholar
  52. 52.
    X.Y. Zhang, B.Q. Ma, Phys. Rev. D 86, 114048 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    I.V. Anikin, M.A. Ivanov, N.B. Kulimanova, V.E. Lyubovitskij, Z. Phys. C 65, 681 (1995).ADSCrossRefGoogle Scholar
  54. 54.
    M. Blank, A. Krassnigg, Phys. Rev. D 84, 096014 (2011).ADSCrossRefGoogle Scholar
  55. 55.
    N. Yamanaka, S. Imai, T.M. Doi, H. Suganuma, Phys. Rev. D 89, 074017 (2014).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsCASBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesCASBeijingChina

Personalised recommendations