Advertisement

A study of a relativistic quark-diquark model for the nucleon

  • C. Gutierrez
  • M. De SanctisEmail author
Regular Article - Theoretical Physics

Abstract

We develop a specific quark-diquark constituent model for the study of the nucleon and its excited states. A relativistic kinetic energy operator is used for both the quark and the diquark. Interaction terms depending on the spin and angular momentum operators are introduced to describe in detail the mass spectrum. Different values of the parameters in the interaction operators are taken for the scalar and axial-vector diquark states. The tensor interaction is also considered in the present model. The baryon spectrum is calculated up to resonance masses of 2 GeV.

Keywords

Interaction Operator Tensor Interaction Radial Wave Function Quark Interaction Baryon Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gunnar S. Bali, Phys. Rep. 343, 1 (2001).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    For the HPQCD collaboration (C.T.H. Davies), 34th International Conference on High Energy Physics, Philadelphia, 2008, arXiv:0810.3309v1.
  3. 3.
    J.J. Dudek, in Proceedings of the CHARM 2007 Workshop, Ithaca, NY, August 5-8, 2007, arXiv:0711.1600v1.
  4. 4.
    M. Gell-Mann, Phys. Lett. 8, 124 (1964).CrossRefGoogle Scholar
  5. 5.
    M.M. Giannini, Rep. Prog. Phys. 54, 453 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 12, 447 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    Eberhard Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. Capstick et al., Eur. Phys. J. A 35, 253 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    M. De Sanctis, D. Prosperi, Nuovo Cimento A 103, 1301 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    M. De Sanctis, P. Quintero, Eur. Phys. J. A 46, 213 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    M. Aiello, M.M. Giannini, E. Santopinto, J. Phys. G 24, 753 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    R. Bijker, F. Iachello, E. Santopinto, J. Phys. A 31, 9041 (1998).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    M. De Sanctis, E. Santopinto, M.M. Giannini, Eur. Phys. J. A 1, 187 (1998).ADSGoogle Scholar
  18. 18.
    M. De Sanctis, E. Santopinto, M.M. Giannini, Eur. Phys. J. A 2, 403 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    M. De Sanctis, M.M. Giannini, L. Repetto, E. Santopinto, Phys. Rev. C 62, 025208 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19, 81 (2004).CrossRefGoogle Scholar
  21. 21.
    M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Rev. Mex. Fís. S 50, 96 (2004).Google Scholar
  22. 22.
    M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 25, 241 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Phys. Rev. C 76, 062201(R) (2007).ADSCrossRefGoogle Scholar
  24. 24.
    E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    R. Bijker, F. Iachello, Phys. Rev. C 61, 067305 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    N.A. Törnqvist, P. Zenczykowski, Phys. Rev. D 29, 2139(R) (1984).ADSCrossRefGoogle Scholar
  27. 27.
    P. Geiger, N. Isgur, Phys. Rev. Lett. 67, 1066 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    P. Geiger, N. Isgur, Phys. Rev. D 44, 799 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    R. Bijker, E. Santopinto, Rev. Mex. Fís. S 53, 6 (2008).Google Scholar
  30. 30.
    C. Adamuscin, E. Tomasi-Gustafsson, E. Santopinto, R. Bijker, Phys. Rev. C 78, 035201 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    R. Bijker, E. Santopinto, Phys. Rev. C 80, 065210 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    E. Santopinto, R. Bijker, Phys. Rev. C 82, 062202 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    R. Bijker, J. Ferretti, E. Santopinto, Phys. Rev. C 85, 035204 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M. Ida, R. Kobayashi, Prog. Theor. Phys. 36, 846 (1966).ADSCrossRefGoogle Scholar
  35. 35.
    D.B. Lichtenberg, L.J. Tassie, Phys. Rev. 155, 1601 (1967).ADSCrossRefGoogle Scholar
  36. 36.
    D.B. Lichtenberg, L.J. Tassie, P.J. Keleman, Phys. Rev. 167, 1535 (1968).ADSCrossRefGoogle Scholar
  37. 37.
    J. Carroll, D.B. Lichtenberg, J. Franklin, Phys. Rev. 174, 1681 (1968).ADSCrossRefGoogle Scholar
  38. 38.
    M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    E. Santopinto, Phys. Rev. C 72, 022201 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    R. Babich et al., Phys. Rev. D 76, 074021 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    C.B. Compean, M. Kirchbach, Eur. Phys. J. A 33, 1 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    Yan-Ming Yu, Spectra of Free Diquark in the Bethe-Salpeter Approach, hep-ph/0602077 v1 (2006).Google Scholar
  43. 43.
    J. Ferretti, A. Vassallo, E. Santopinto, Phys. Rev. C 83, 065204 (2011).ADSCrossRefGoogle Scholar
  44. 44.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84, 014025 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, Phys. Rev. C 84, 055201 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    E. Klempt, B.Ch. Metsch, Eur. Phys. J. A 48, 127 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    Tianbo Liu, Bo-Qiang Ma, Phys. Rev. C 89, 055202 (2014).ADSCrossRefGoogle Scholar
  48. 48.
    C. Gutierrez, M. De Sanctis, Pramana J. Phys. 72, 451 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, Relativistic quark-diquark model of baryons with a spin-isospin transition interaction, hep-ph/1410.0590 v1 (2014).Google Scholar
  50. 50.
    G. Galatà, E. Santopinto, Phys. Rev. C 86, 045202 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    I.C. Cloët, G.A. Miller, Phys. Rev. C 86, 015208 (2012).ADSCrossRefGoogle Scholar
  52. 52.
    V.M. Grichine, N.I. Starkov, N.P. Zotov, Eur. Phys. J. C 73, 2320 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    V.M. Grichine, Eur. Phys. J. Plus 129, 112 (2014).CrossRefGoogle Scholar
  54. 54.
    H. Basler, M. Buballa, Phys. Rev. D 81, 054033 (2010).ADSCrossRefGoogle Scholar
  55. 55.
    H. Abuki, G. Baym, T. Hatsuda, N. Yamamoto, Phys. Rev. D 81, 125010 (2010).ADSCrossRefGoogle Scholar
  56. 56.
    D. Ebert et al., Phys. Rev. D 76, 114015 (2007).ADSCrossRefMathSciNetGoogle Scholar
  57. 57.
    D. Ebert et al., Eur. Phys. J. C 60, 273 (2009).ADSCrossRefGoogle Scholar
  58. 58.
    E. Santopinto, G. Galatà, Phys. Rev. C 75, 045206 (2007).ADSCrossRefGoogle Scholar
  59. 59.
    W. Heupet, Tetraquark bound state in a Bethe-Salpeter approach, arXiv:1206.5129v2.
  60. 60.
    A. Majethiya, Spectroscopy and decay properties of Σ b, Λ b baryons in quark-diquark model (2011) arXiv:1102.4160v1.
  61. 61.
    Smruti Patel, Manan Shah, P.C. Vinodkumar, Eur. Phys. J. A 50, 131 (2014).ADSCrossRefGoogle Scholar
  62. 62.
    T. Friedmann, Eur. Phys. J. C 73, 2298 (2013).ADSCrossRefGoogle Scholar
  63. 63.
    T. Friedmann, Eur. Phys. J. C 73, 2299 (2013).ADSCrossRefGoogle Scholar
  64. 64.
    B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1953).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  65. 65.
    W.H. Klink, Phys. Rev. C 58, 3617 (1998).ADSCrossRefGoogle Scholar
  66. 66.
    R.F. Wagenbrunn, S. Boffi, W. Kink, W. Plessas, M. Radici, Phys. Lett. B 511, 33 (2001).ADSCrossRefGoogle Scholar
  67. 67.
    T. Melde, L. Canton, W. Plessas, R.F. Wagenbrunn, Eur. Phys. J. A 25, 97 (2005).CrossRefGoogle Scholar
  68. 68.
    B.D. Keister, W.N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991).Google Scholar
  69. 69.
    V.V. Kudryashov, V.I. Reshetnyak, Improved variational approach for the Cornell potential, arXiv:0911.4256v1 [math-ph] (2009).
  70. 70.
    H. Chung, J. Lee, J. Kor. Phys. Soc. 52, 1151 (2008).ADSCrossRefGoogle Scholar
  71. 71.
    J. Eiglsperger, Quarkonium Spectroscopy: Beyond One-Gluon Exchange, Diploma Thesis, Technische Universität München, Physik-Department, January 2007, arXiv:0707.1269v1.
  72. 72.
    P. Gonzalez, Phys. Rev. D 80, 054010 (2009).ADSCrossRefGoogle Scholar
  73. 73.
    M. Moshinsky, Y. Smirnov, The Harmonic Oscilator in Modern Physics, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (1996).Google Scholar
  74. 74.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton University, 1957).Google Scholar
  75. 75.
    S. Eidelman et al., Phys. Lett. B 592, 1 (2004).ADSCrossRefGoogle Scholar
  76. 76.
    H.-C. Jean, D. Robson, A.G. Williams, Phys. Rev. D 50, 5873 (1994).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Instituto de Física TeóricaUNESPSão PauloBrasil
  2. 2.Departamento de FísicaUniversidad Nacional de ColombiaBogota, D.CColombia

Personalised recommendations