Advertisement

Density and temperature in heavy-ion collisions: A test of classical and quantum approaches

  • H. ZhengEmail author
  • G. Bonasera
  • J. Mabiala
  • P. Marini
  • A. Bonasera
Regular Article - Theoretical Physics

Abstract

Different methods to extract the temperature and density in heavy-ion collisions (HIC) are compared using a statistical model tailored to reproduce many experimental features at low excitation energy. The model assumes a sequential decay of an excited nucleus and a Fermi-gas entropy. We first generate statistical events as a function of excitation energy but stopping the decay chain at the first step. In such a condition the “exact” model temperature is determined from the Fermi-gas relation to the excitation energy. From these events, using quantum fluctuation (QF) and classical fluctuation (CF) methods for protons and neutrons, we derive temperature and density (quantum case only) of the system under consideration. Additionally, the same quantities are also extracted using the double ratio (DR) method for different particle combinations. A very good agreement between the “exact” model temperatures and quantum fluctuation temperatures is obtained. The role of the density is discussed. Classical methods give a reasonable estimate of the temperature when the density is very low, as expected. The effects of secondary decays of the excited fragments are discussed as well.

Keywords

Excitation Energy Symmetry Energy Quantum Fluctuation Excited Nucleus Double Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    G. Giuliani, H. Zheng, A. Bonasera, Progr. Part. Nucl. Phys. 76, 116 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. Bonasera, M. Bruno, C.O. Dorso, P.F. Mastinu, Riv. Nuovo Cimento 23, 2 (2000).Google Scholar
  7. 7.
    J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    A. Kelić, J.B. Natowitz, K.H. Schmidt, Eur. Phys. J. A 30, 203 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    M.B. Tsang, F. Zhu, W.G. Lynch, A. Aranda, D.R. Bowman, R.T. de Souza, C.K. Gelbke, Y.D. Kim, L. Phair, S. Pratt, C. Williams, H.M. Xu, W.A. Friedman, Phys. Rev. C 53, R1057 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    S. Albergo, S. Costa, E. Costanzo, A. Rubbino, Nuovo Cimento A 89, 1 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    S. Das Gupta, J. Pan, M.B. Tsang, Phys. Rev. C 54, R2820 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    H. Xi, W.G. Lynch, M.B. Tsang, W.A. Friedman, D. Durand, Phys. Rev. C 59, 1567 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    L. Qin et al., Phys. Rev. Lett. 108, 172701 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    K. Hagel et al., Phys. Rev. Lett. 108, 062702 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    R. Wada et al., Phys. Rev. C 85, 064618 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. Mekjian, Phys. Rev. Lett. 38, 640 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    A.Z. Mekjian, Phys. Rev. C 17, 1051 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    T.C. Awes, G. Poggi, C.K. Gelbke, B.B. Back, B.G. Glagola, H. Breuer, V.E. Viola, Jr., Phys. Rev. C 24, 89 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    L.P. Csernai, J.I. Kapusta, Phys. Rep. 131, 223 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    G. Röpke, S. Shlomo, A. Bonasera, J.B. Natowitz, S.J. Yennello, A.B. McIntosh, J. Mabiala, L. Qin, S. Kowalski, K. Hagel, M. Barbui, K. Schmidt, G. Giulani, H. Zheng, S. Wuenschel, Phys. Rev. C 88, 024609 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    S. Wuenschel et al., Nucl. Phys. A 843, 1 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    H. Zheng, A. Bonasera, Phys. Lett. B 696, 178 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    H. Zheng, A. Bonasera, Phys. Rev. C 86, 027602 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    H. Zheng, G. Giuliani, A. Bonasera, Nucl. Phys. A 892, 43 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    H. Zheng, G. Giuliani, A. Bonasera, Phys. Rev. C 88, 024607 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    H. Zheng, G. Giuliani, A. Bonasera, J. Phys. G: Nucl. Part. Phys. 41, 055109 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    M. Papa, T. Maruyama, A. Bonasera, Phys. Rev. C 64, 024612 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    M. Papa, G. Giuliani, A. Bonasera, J. Comput. Phys. 208, 403 (2005).ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    J. Mabiala, A. Bonasera, H. Zheng, A.B. McIntosh, Z. Kohley, P. Cammarata, K. Hagel, L. Heilborn, L.W. May, A. Raphelt, G.A. Souliotis, A. Zarrella, S.J. Yennello, Int. J. Mod. Phys. E 22, 1350090 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    B.C. Stein et al., J. Phys. G: Nucl. Part. Phys. 41, 025108 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    J. Esteve et al., Phys. Rev. Lett. 96, 130403 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    T. Müller et al., Phys. Rev. Lett. 105, 040401 (2010).CrossRefGoogle Scholar
  33. 33.
    C. Sanner et al., Phys. Rev. Lett. 105, 040402 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    C.I. Westbrook, Physics 3, 59 (2010).CrossRefGoogle Scholar
  35. 35.
    P. Marini, in preparation.Google Scholar
  36. 36.
    R.J. Charity, Computer code GEMINI, see http://www.chemistry.wustl.edu/~rc.
  37. 37.
    J.O. Newton, D.J. Hinde, R.J. Charity, J.R. Leigh, J.J.M. Bokhorst, A. Chatterjee, G.S. Foote, S. Ogaza, Nucl. Phys. A 483, 126 (1988).ADSCrossRefGoogle Scholar
  38. 38.
    R.J. Charity et al., Nucl. Phys. A 483, 371 (1988).ADSCrossRefGoogle Scholar
  39. 39.
    D.R. Bowman, G.F. Peaslee, N. Colonna, R.J. Charity, M.A. McMahan, D. Delis, H. Han, K. Jing, G.J. Wozniak, L.G. Moretto, W.L. Kehoe, B. Libby, A.C. Mignerey, A. Moroni, S. Angius, I. Iori, A. Pantaleo, G. Guarino, Nucl. Phys. A 523, 386 (1991).ADSCrossRefGoogle Scholar
  40. 40.
    R.J. Charity, Phys. Rev. C 53, 512 (1996).ADSCrossRefGoogle Scholar
  41. 41.
    R.J. Charity, Phys. Rev. C 61, 054614 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    L.G. Sobotka, R.J. Charity, J.Tõke, W.U. Schröder, Phys. Rev. Lett. 93, 132702 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Charity, Phys. Rev. C 82, 014610 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    W.D. Tian, Y.G. Ma, X.Z. Cai, D.Q. Fang, W. Guo, W.Q. Shen, K. Wang, H.W. Wang, M. Veselsky, Phys. Rev. C 76, 024607 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    P. Zhou, W.D. Tian, Y.G. Ma, X.Z. Cai, D.Q. Fang, H.W. Wang, Phys. Rev. C 84, 037605 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    L. Landau, F. Lifshits, Statistical Physics (Pergamon, New York, 1980).Google Scholar
  47. 47.
    K. Huang, Statistical Mechanics, second edition (J. Wiley and Sons, New York, 1987).Google Scholar
  48. 48.
    L.G. Moretto, J.B. Elliott, L. Phair, P.T. Lake, J. Phys. G: Nucl. Part. Phys. 38, 113101 (2011).ADSCrossRefGoogle Scholar
  49. 49.
    J.B. Elliott, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013).ADSCrossRefGoogle Scholar
  50. 50.
    J.B. Elliott et al., Phys. Rev. C 67, 024609 (2003).ADSCrossRefGoogle Scholar
  51. 51.
    J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).ADSCrossRefGoogle Scholar
  52. 52.
    A. Bonasera et al., Phys. Rev. Lett. 101, 122702 (2008).ADSCrossRefGoogle Scholar
  53. 53.
    J. Mabiala, in preparation.Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • H. Zheng
    • 1
    • 2
    Email author
  • G. Bonasera
    • 1
    • 2
  • J. Mabiala
    • 1
  • P. Marini
    • 3
  • A. Bonasera
    • 1
    • 4
  1. 1.Cyclotron InstituteTexas A&M UniversityCollege StationUSA
  2. 2.Physics DepartmentTexas A&M UniversityCollege StationUSA
  3. 3.CENBGUniversité de Bordeaux, CNRS/IN2P3GradignanFrance
  4. 4.Laboratori Nazionali del SudINFNCataniaItaly

Personalised recommendations