Advertisement

Mass distribution in the quasi-mono-energetic neutron-induced fission of 232Th

  • H. NaikEmail author
  • Rita Crasta
  • S. V. Suryanarayana
  • P. M. Prajapati
  • V. K. Mulik
  • B. S. Shivasankar
  • K. C. Jagadeesan
  • S. V. Thakare
  • S. C. Sharma
  • A. Goswami
Regular Article - Experimental Physics

Abstract.

The cumulative yields of various fission products in 232Th(n, f) with average neutron energies of 6.35, 8.53 and 10.09 MeV have been determined using an off-line \(\gamma\)-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction. From the cumulative fission yields, the mass chain yields were obtained by using charge distribution correction of medium energy. The peak-to-valley (\(P/V\)) ratio, the average value of light mass (\(\langle A_{L}\rangle\)), heavy mass (\(\langle A_{H} \rangle\)) and the average number of neutrons (\(\langle\nu \rangle\)) at the three different neutron energies of the present work and at other energies from the literature in the 232Th(n, f) reaction were obtained from the mass yield data. The present and the existing literature data in the 232Th(n, f) reaction at various excitation energies were compared with similar data in the 238U(n, f) reaction. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect such as shell closure proximity and even-odd effect. The role of standard I and standard II asymmetric mode of fission was discussed. The different types of mass-yield distributions between 232Th(n, f) and 238U(n, f) reactions were explained from different types of the potential energy between the two fissioning systems. The role of excitation energy was also investigated.

Keywords

Excitation Energy High Energy Phys Neutron Energy Giant Dipole Resonance Symmetric Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.F. Mughabghab, M. Diveenam, N.E. Holden, Neutron Resonance Parameters and Thermal Cross Sections, Vol. I (Academic Press, New York, 1981)Google Scholar
  2. 2.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973)Google Scholar
  3. 3.
    C. Wagemans, The Nuclear Fission Process (CRC, London, 1990)Google Scholar
  4. 4.
    E.A.C. Crouch, At. Data Nucl. Data Tables 19, 417 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    B.F. Rider, Compilation of fission products yields, NEDO, 12154 3c ENDF-327, Valecicecitos Nuclear Centre (1981)Google Scholar
  6. 6.
    J.R. England, B.F. Rider, Evaluation and compilation of fission products yields, ENDF/BVI (1989, 1992)Google Scholar
  7. 7.
    M. James, R. Mills, Neutron fission products yields, UKFY2 (1991) and JEF-2.2 (1993)Google Scholar
  8. 8.
    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and TrendsGoogle Scholar
  10. 10.
    L. Mathieu, Proportion for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Paper No. 428 (Tsukuba, Japan, 2005)Google Scholar
  11. 11.
    A. Nuttin, D. Heuer, A. Biliebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)CrossRefGoogle Scholar
  12. 12.
    T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. 2007, 97486 (2007)CrossRefGoogle Scholar
  13. 13.
    Annual Project Status Report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994Google Scholar
  14. 14.
    R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Ganesan, Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA Coordinated research project on ``Evaluated data for thorium--uranium fuel cycle'', in Third Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS)-0494 (2006)Google Scholar
  16. 16.
    F. Carminati, R. Klapisch, J.P. Revol, J.A. Rubia, C. Rubia, CERN/AT/93-49 (ET) 1993Google Scholar
  17. 17.
    C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche, CERN/AT/95-44 (ET) 1995, CERN/AT/95-53(ET) 1995, CERN/LHC/96-01 (LET) 1996, CERN/LHC/97-01 (EET) 1997Google Scholar
  18. 18.
    C.D. Bowman, AIP Conf. Proc. 346, 22 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Accelerator Driven Systems: Energy Generation and Transmutation of Nuclear Waste, Status report, IAEA, Vienna, IAEA-TECDO-985, Nov. 1997Google Scholar
  20. 20.
    C.D. Bowman, Annu. Rev. Nucl. Part Sci. 48, 505 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ganesan, Pramana J. Phys. 68, 257 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    K.-H. Schmidt, S. Steinhauser, C. Bockstiegel, A. Rewe, A. Heinz, A.R. Junghans, J. Benlliure, H.-G. Clerc, M. de Jong, J. Muller, M. Pfutzner, B. Voss, Nucl. Phys. A 665, 221 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    S. Steinhauser, J. Benlliure, C. Bockstiegel, H.-G.Clerc, A. Heinz, A. Rewe, M. de Jong, A.R. Junghans, J. Muller, M. Pfutzner, K.-H. Schmidt, Nucl. Phys. A 634, 89 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J. Benlliure, A.R. Junghans, K.-H. Schmidt, Eur. Phys. J. A 13, 93 (2002)ADSGoogle Scholar
  25. 25.
    R.H. Iyer, C.K. Mathews, N. Ravindran, K. Rengan, D.V. Singh, M.V. Ramaniah, H.D. Sharma, J. Inorg. Nucl. Chem. 25, 465 (1963)CrossRefGoogle Scholar
  26. 26.
    H.N. Erten, A. Grutter, E. Rossler, H.R. von Gunten, Nucl. Sci. Eng. 79, 167 (1981)Google Scholar
  27. 27.
    H. Naik, A.G.C. Nair, P.C. Kalsi, A.K. Pandey, R.J. Singh, A. Ramaswami, R.H. Iyer, Radiochim. Acta 75, 69 (1996)Google Scholar
  28. 28.
    R.H. Iyer, H. Naik, A.K. Pandey, P.C. Kalsi, R.J. Singh, A. Ramaswami, A.G.C. Nair, Nucl. Sci. Eng. 135, 227 (2000)Google Scholar
  29. 29.
    A. Turkevich, J.B. Nidday, Phys. Rev. 84, 52 (1951)ADSCrossRefGoogle Scholar
  30. 30.
    A. Turkevisch, J.B. Nidday, A. Tompkins, Phys. Rev. 89, 552 (1953)ADSCrossRefGoogle Scholar
  31. 31.
    K.M. Broom, Phys. Rev. B 133, 874 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    G.P. Ford, R.B. Leachman, Phys. Rev. B 137, 826 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    R. Ganapathy, P.K. Kuroda, J. Inorg. Nucl. Chem. 28, 2071 (1966)CrossRefGoogle Scholar
  34. 34.
    Tin Mo, M.N. Rao, J. Inorg. Nucl. Chem. 30, 345 (1968)CrossRefGoogle Scholar
  35. 35.
    M. Thin, M.N. Rao, P.K. Kurdo, J. Inorg. Nucl. Chem. 30, 1145 (1968)CrossRefGoogle Scholar
  36. 36.
    A.I. Sagachev, V.G. Vorobeieva, B.D. Kuzminov, V.B. Mikhaylov, Z. Tarsko, Sov. J. Nucl. Phys. 7, 475 (1968)Google Scholar
  37. 37.
    S.J. Lyle, J. Sellears, Radiochim. Acta 12, 43 (1969)Google Scholar
  38. 38.
    L.H. Gevaert, R.E. Jervis, H.D. Sharma, Can. J. Chem. 48, 641 (1970)CrossRefGoogle Scholar
  39. 39.
    J. Blachot, L.C. Carraz, P. Cavallini, E. Monnand, F. Schusslor, J. Radioanal. Nucl. Chem. 7, 309 (1971)CrossRefGoogle Scholar
  40. 40.
    D.L. Swindle, D.T. Moore, J.N. Beck, P.K. Kuroda, J. Inorg. Nucl. Chem. 33, 3643 (1971)CrossRefGoogle Scholar
  41. 41.
    W. Holubarsch, L. Pfeiffer, F. Gonnenwein, Nucl. Phys. A 171, 631 (1971)ADSCrossRefGoogle Scholar
  42. 42.
    S.A. Rao, Phys. Rev. 5, 171 (1972)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Bocquet, R. Brissot, J. Crancon, A. Moussa, Nucl. Phys. A 189, 556 (1972)ADSCrossRefGoogle Scholar
  44. 44.
    S.M. Dubroviva, V.I. Nogorodtseva, L.N. Morozov, V.A. Pchevin, L.V. Chistyakov, V.A. Schigin, V.M. Shubko, Yad. Fiz. 17, 1470 (1973)Google Scholar
  45. 45.
    J. Trochon, H.A. Yehia, F. Brisard, Y. Pranal, Nucl. Phys. A 318, 63 (1979)ADSCrossRefGoogle Scholar
  46. 46.
    L.E. Glendenin, J.E. Gindler, I. Ahmad, D.J. Henderson, J.W. Meadows, Phys. Rev. C 22, 152 (1980)ADSCrossRefGoogle Scholar
  47. 47.
    S.T. Lam, L.L. Yu, H.W. Fielding, W.K. Dawson, G.C. Neilson, Phys. Rev. C 28, 1212 (1983)ADSCrossRefGoogle Scholar
  48. 48.
    A.E. Richoortson, H.L. Wright, J.L. Meason, J.R. Smith, Nucl. Sci. Eng. 94, 413 (1986)CrossRefGoogle Scholar
  49. 49.
    Li Wen-Xin, Sun Tong-Yu, Sun Xiu-Hua, Fu Min, Dong Tian-Rong, Zheng Man-Jiao, High Energy Phys. Nucl. Phys. 11, 376 (1987)Google Scholar
  50. 50.
    Sun Tong-Yu, Li Wen-Xin, Dong Tian-Rong, Fu Min, High Energy Phys. Nucl. Phys. 12, 221 (1988)Google Scholar
  51. 51.
    V.D. Simutkin, I.V. Ryzhov, G.A. Tutin, L.A. Vaishnene, J. Blongren, S. Pomp, M. Oesterlung, P. Andersson, R. Bevilacqua, J.P. Menlders, R. Prieels, AIP Conf. Proc. 1175, 393 (2010)ADSGoogle Scholar
  52. 52.
    P.M. Prajapati, H. Naik, S. Mukherjee, S.V. Suryanarayana, B.S. Shivashankar, R. Crasta, V.K. Mulik, K.C. Jagadeesan, S.V. Thakre, A. Goswami, Nucl. Sci. Eng. 176, 1 (2014)CrossRefGoogle Scholar
  53. 53.
    I.V. Ryzhov, S.G. Yavshits, G.A. Tutin, N.V. Kovalev, A.V. Saulski, N.A. Kudryashev, A.V. Saulski, N.A. Kudryashev, M.S. Onegin, L.A. Vaishnene, Yu.A. Gavrikov, O.T. Grudzevich, V.D. Simutkin, S. Pomp, J. Blomgren, M. Osterlund, P. Andersson, R. Bevilacqua, J. Meulders, R. Prieels, Phys. Rev. C 83, 054603 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    K.M. Brown, Phys. Rev. 126, 627 (1962)ADSCrossRefGoogle Scholar
  55. 55.
    M.P. Menon, P.K. Kurdo, J. Inorg. Nucl. Chem. 26, 40 (1964)CrossRefGoogle Scholar
  56. 56.
    N.L. Borisova, S.M. Dubrovina, V.I. Novgorodtseva, V.A. Pchelin, V.A. Shigin, V.M. Shubko, Sov. J. Nucl. Phys. 6, 331 (1968)Google Scholar
  57. 57.
    S.J. Lyle, J. Tillars, Radiochim. Acta 12, 43 (1969)Google Scholar
  58. 58.
    D.J. Gorman, R.H. Tomilson, Can. J. Chem. 46, 1663 (1968)CrossRefGoogle Scholar
  59. 59.
    S.J. Lyle, J. Sellear, Radiochim. Acta 12, 43 (1968)Google Scholar
  60. 60.
    S.J. Lyle, R. Wellum, Radiochim. Acta 13, 167 (1969)Google Scholar
  61. 61.
    S.G. Birgul, S.J. Lyle, R. Wellum, Radiochim. Acta 16, 104 (1971)Google Scholar
  62. 62.
    J.P. Bocquet, Nucl. Phys. 189, 556 (1972)CrossRefGoogle Scholar
  63. 63.
    D.R. Nethaway, B. Mendoza, Phys. Rev. C 6, 1821 (1972)ADSCrossRefGoogle Scholar
  64. 64.
    D.R. Nethaway, B. Mendoza, Phys. Rev. C 6, 1827 (1972)ADSCrossRefGoogle Scholar
  65. 65.
    J. Blachot, L.C. Carraz, P. Cavalini, C. Chauvin, A. Ferrieu, A. Moussa, J. Inorg. Nucl. Chem. 36, 495 (1974)CrossRefGoogle Scholar
  66. 66.
    J.T. Harvey, D.E. Adams, W.D. James, J.N. Beck, J.L. Meason, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 2243 (1975)CrossRefGoogle Scholar
  67. 67.
    D.E. Adams, W.D. James, J.N. Beck, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 419 (1975)CrossRefGoogle Scholar
  68. 68.
    M. Rajagopalan, H.S. Pruys, A. Grutter, E.A. Hermes, H.R. von Gunten, J. Inorg. Nucl. Chem. 38, 351 (1976)CrossRefGoogle Scholar
  69. 69.
    S. Daroczy, P. Raics, S. Nagy, L. Koever, I. Hamvas, E. Gorman, ATOMKI Kozl. 18, 317 (1976)Google Scholar
  70. 70.
    T.C. Chapman, G.A. Anzelon, G.C. Spitale, D.R. Nethaway, Phys. Rev. C 17, 1089 (1978)ADSCrossRefGoogle Scholar
  71. 71.
    S. Nagy, K.F. Flynn, J.E. Gindler, J.W. Meadows, L.E. Glendenin, Phys. Rev. C 17, 163 (1978)ADSCrossRefGoogle Scholar
  72. 72.
    L. We-Xin, S. Tong-Yu, Z. Man-Jiao, D. Tian-Rong, S. Xiu-Hua, He Hua-Xue, Yu F. Hua-Kue, High Energy Phys. Nucl. Phys. 2, 9 (1980)Google Scholar
  73. 73.
    L. We-Xin, S. Tong-Yu, Z. Man-Jiao, D. Tian-Rong, S. Xiu-Hua, He Hua-Xue, Yu F. Hua-Kue, High Energy Phys. Nucl. Phys. 5, 176 (1983)Google Scholar
  74. 74.
    L. Ze, Z. Chun-Hua, L. Cong-Gui, W. Xiu-Zhi, Q. Lim-Kun, C. Anzhi, L. Hui-Jung, Z. Su-Jing, L. Yong-Hui, Ju Chang-Xin, L. Da-Ming, T. Pei-Ja, M. Jiang-Chen, J. Ki-Xing, High Energy Phys. J. Nucl. Phys. 7, 97 (1985)Google Scholar
  75. 75.
    L. Cong-Gui, L. Hui-Jun, L. Yong-Hui, High Energy Phys. Nucl. Phys. 7, 235 (1985)Google Scholar
  76. 76.
    A. Afarideh, K.R. Annole, Ann. Nucl. Energy 16, 313 (1989)CrossRefGoogle Scholar
  77. 77.
    Z. Li, X. Wang, K. Jing, A. Cui, D. Liu, S. Su, P. Tang, T. Chih, S. Zhang, J. Gao, Radiochim. Acta 64, 95 (1994)Google Scholar
  78. 78.
    G. Lhersonnau, P. Denloov, G. Canchel, J. Huikari, J. Jardin, A. Tokinen, V. KOlhinen, C. Lau, L. Lebroton, A.C. Mueller, A. Nieminen, S. Nummela, H. Penttila, K. Perajavi, Z. Radivojevic, V. Rubchenya, M.G. Saint-Laurent, W.H. Trzaska, D. Vakhtin, J. Vervier, A.C. Villari, J.C. Viang, J. Aystoe, Eur. Phys. J. A 9, 385 (2000)ADSCrossRefGoogle Scholar
  79. 79.
    I. Clenk, Radiochim. Acta 85, 85 (1999)Google Scholar
  80. 80.
    I. Clenk, Radiochim. Acta 89, 481 (2001)Google Scholar
  81. 81.
    J. Laurec, A. Adam, T. DeBruyne, E. Brauge, T. Granier, J. Aupiais, O. Barsillon, G. Lepetit, N. Authier, P. Casoli, Nucl. Data Sheet 111, 2965 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    H. Naik, V.K. Mulik, P.M. Prajapati, B.S. Shivasankar, S.V. Suryanarayana, K.C. Jagadeesan, S.V. Thakare, S.C. Sharma, A. Goswami, Nucl. Phys. A 913, 185 (2013)ADSCrossRefGoogle Scholar
  83. 83.
    H. Umezawa, S. Baba, H. Baba, Nucl. Phys. A 160, 65 (1971)ADSCrossRefGoogle Scholar
  84. 84.
    P.M. Prajapati, H. Naik, S.V. Suryanarayana, S. Mukherjee, K.C. Jagadeesan, S.C. Sharma, S.V. Thakre, K.K. Rasheed, S. Ganesan, A. Goswami, Eur. Phys. J. A 48, 35 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    R. Crasta, H. Naik, S.V. Suryanarayana, B.S. Shivashankar, V.K. Mulik, P.M. Prajapati, Ganesh Sanjeev, S.C. Sharma, P.V. Bhagwat, A.K. Mohanty, S. Ganesan, A. Goswami, Ann. Nucl. Energy 47, 160 (2012)CrossRefGoogle Scholar
  86. 86.
    J.F. Ziegler, J.P. Biersack, U. Littmark, SRIM 2003 code. The stopping and Range of Ions in Solids (Pergamon, New York, 2003)Google Scholar
  87. 87.
    H. Liskien, A. Paulsen, At. Data Nucl. Data Tables 15, 57 (1975)ADSCrossRefGoogle Scholar
  88. 88.
    J.W. Meadows, D.L. Smith, Neutrons from proton bombardment of natural Lithium, Argonne National Laboratory Report ANL-7983 (1972)Google Scholar
  89. 89.
    C.H. Poppe, J.D. Anderson, J.C. Davis, S.M. Grimes, C. Wong, Phys. Rev. C 14, 438 (1976)ADSCrossRefGoogle Scholar
  90. 90.
    E. Browne, R.B. Firestone, in Table of Radioactive Isotopes, edited by V.S. Shirley (Wiley, New York, 1986) and R.B. Firestone, L.P. Ekstrom, in Table of Radioactive Isotopes, Version 2.1 (2004)http://ie.lbl.gov/toi/index.asp
  91. 91.
    J. Blachot, C. Fiche, Ann. Phys. Suppl. 6, 3 (1981)Google Scholar
  92. 92.
    N. Sugarman, A. Turkevich, in Radiochemical Studies: The Fission Product, edited by C.D. Coryell, N. Sugarman, Vol. 3 (McGraw-Hill, New York, 1951) p. 1396Google Scholar
  93. 93.
    P. Moller, Nucl. Phys. A 192, 529 (1972)ADSCrossRefGoogle Scholar
  94. 94.
    H. Naik, R.J. Singh, R.H. Iyer, Eur. Phys. J. A 16, 495 (2003)ADSCrossRefGoogle Scholar
  95. 95.
    U. Brossa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)ADSCrossRefGoogle Scholar
  96. 96.
    B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)ADSCrossRefGoogle Scholar
  97. 97.
    H. Kudo, H. Muramatsu, H. Nakahara, K. Miyano, I. Kohno, Phys. Rev. C 25, 3011 (1982)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • H. Naik
    • 1
    Email author
  • Rita Crasta
    • 2
  • S. V. Suryanarayana
    • 3
  • P. M. Prajapati
    • 4
  • V. K. Mulik
    • 5
  • B. S. Shivasankar
    • 6
  • K. C. Jagadeesan
    • 7
  • S. V. Thakare
    • 7
  • S. C. Sharma
    • 3
  • A. Goswami
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Microtron Centre, Department of Studies in PhysicsMangalore UniversityKarnatakaIndia
  3. 3.Nuclear Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Physics Department, Faculty of ScienceThe M. S. University of BarodaVadodaraIndia
  5. 5.Department of PhysicsUniversity of PunePuneIndia
  6. 6.Department of StatisticsManipal UniversityManipalIndia
  7. 7.Radiopharmaceutical DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations