Advertisement

The Feasibility of direct measurement of the 44Ti(α, p)47V and 40Ca(α, p)43Sc reactions in forward kinematics at astrophysically relevant temperatures

  • T. Al-AbdullahEmail author
  • S. Akhmadaliev
  • M. Ayranov
  • D. Bemmerer
  • R. Dressler
  • Z. Elekes
  • N. Kivel
  • K. Schmidt
  • D. Schumann
  • M. Sobiella
  • T. Stowasser
  • M. P. Takács
  • K. Zuber
Regular Article - Experimental Physics

Abstract

Understanding the synthesis of radioactive 44Ti in the α-rich freeze-out following core-collapse supernovae may help to better interpret such explosive events. The γ-ray lines from the decay of 44Ti have been observed by space-based γ-ray telescopes from two supernova remnants. It is believed that the 44Ti(α, p)47V reaction dominates the destruction of 44Ti, while the 40Ca(α, p)43Sc reaction removes fuel from the main 44Ti production reaction 40Ca(α, γ)44Ti. Here we report on a possible technique to determine both reaction rates at astrophysically relevant energies in forward kinematics. The first reaction will be performed using a 1-10 MBq 44Ti target. Two important concerns are considered to make this study possible: The amount of stable Ti in the radioactive target, which will be prepared via spallation reactions at Paul Scherrer Institute (PSI), and the degree of radioactive contaminations in the experimental setup due to sputtered 44Ti atoms after intensive irradiations. Several online and offline measurements in parallel with Monte Carlo simulations were performed to investigate these issues.

Keywords

Supernova Remnant Paul Scherrer Institute Spallation Reaction 44Ti Target TALYS Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.-T. Janka, Annu. Rev. Nucl. Part. Sci 62, 407 (2012).CrossRefADSGoogle Scholar
  2. 2.
    K. Kotake et al., Rep. Prog. Phys. 69, 971 (2006).CrossRefADSGoogle Scholar
  3. 3.
    J. Vink et al., Astrophys. J. 560, L79 (2001).CrossRefADSGoogle Scholar
  4. 4.
    M. Renaud et al., Astrophys. J. 647, L41 (2006).CrossRefADSGoogle Scholar
  5. 5.
    A.F. Iyudin et al., Astron. Astrophys. 284, L1 (1994).ADSGoogle Scholar
  6. 6.
    I. Ahmad et al., Phys. Rev. C 74, 065803 (2006).CrossRefADSGoogle Scholar
  7. 7.
    J. Larsson et al., Nature 474, 484 (2011).CrossRefADSGoogle Scholar
  8. 8.
    S.A. Grebenev et al., Nature 490, 373 (2012).CrossRefADSGoogle Scholar
  9. 9.
    B.W. Grefenstette et al., Nature 506, 339 (2014).CrossRefADSGoogle Scholar
  10. 10.
    S.E Woosley, R.D Hoffman, Astrophys. J. 368, L31 (1991).CrossRefADSGoogle Scholar
  11. 11.
    F.-K. Thielemann et al., Astrophys. J. 460, 408 (1996).CrossRefADSGoogle Scholar
  12. 12.
    L.-S. The et al., Astron. Astrophys. 450, 1037 (2006).CrossRefADSGoogle Scholar
  13. 13.
    G. Magkotsios et al., Astrophys. J. Suppl. Ser. 191, 66 (2010).CrossRefADSGoogle Scholar
  14. 14.
    L.-S. The et al., Astrophys. J. 504, 500 (1998).CrossRefADSGoogle Scholar
  15. 15.
    C. Vockenhuber et al., Phys. Rev. C 76, 035801 (2007).CrossRefADSGoogle Scholar
  16. 16.
    K. Schmidt et al., Phys. Rev. C 88, 025803 (2013).CrossRefADSGoogle Scholar
  17. 17.
    J.J. He, A.St.J. Murphy et al., Phys. Rev. C 75, 066801 (2007).CrossRefGoogle Scholar
  18. 18.
    A.A. Sonzogni et al., Phys. Rev. Lett. 84, 1651 (2000).CrossRefADSGoogle Scholar
  19. 19.
    T. Rauscher, Phys. Rev. C 81, 045807 (2010).CrossRefADSGoogle Scholar
  20. 20.
    V. Margerin et al., Phys. Lett. B 731, 358 (2014).CrossRefADSGoogle Scholar
  21. 21.
    T. Rauscher, F.-K. Thielemann, At. Data Nucl. Data Tables 79, 47 (2001).CrossRefADSGoogle Scholar
  22. 22.
    R. Dressler et al., J. Phys. G: Nucl. Part. Phys. 39, 105201 (2012).CrossRefADSGoogle Scholar
  23. 23.
    A.J. Howard et al., Astrophys. J. 188, 131 (1978).CrossRefADSGoogle Scholar
  24. 24.
    M. Friedrich et al., Nucl. Instrum. Methods Phys. Res. B 382, 357 (1996).CrossRefGoogle Scholar
  25. 25.
    K. Schmidt et al., Phys. Rev. C 89, 045802 (2014).CrossRefADSGoogle Scholar
  26. 26.
    D. Schumann, J. Neuhausen, J. Phys. G: Nucl. Part. Phys. 35, 014046 (2008).CrossRefADSGoogle Scholar
  27. 27.
    Y. Dai, G.S. Bauer, J. Nucl. Matt. 296, 43 (2001).CrossRefADSGoogle Scholar
  28. 28.
    Kiyotaka Wasa, Handbook of sputtering deposition technology, 2 edition (William Andrew, 2012).Google Scholar
  29. 29.
    J.F. Ziegler et al., Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).CrossRefADSGoogle Scholar
  30. 30.
    J.P. Biersack, W. Eckstein, Appl. Phys. A 34, 73 (1984).CrossRefADSGoogle Scholar
  31. 31.
    P. Sigmund, Thin Solid Films 520, 6031 (2012).CrossRefADSGoogle Scholar
  32. 32.
    W. Möller, W. Eckstein, Nucl. Instrum. Methods Phys. Res. B 2, 814 (1984).CrossRefADSGoogle Scholar
  33. 33.
    Compendium of Dose Coefficients based on ICRP Publication 60, ICRP Publication 119, Ann. ICRP 41, Suppl. (2012).Google Scholar
  34. 34.
    K. Schmidt, Report HZDR-020 (2012) and Diploma thesis, Technical University of Dresden, 2011.Google Scholar
  35. 35.
    A.J. Koning, in Proceedings of the International Conference on Nuclear Data for Science and Technology (Nice, France, April 22-27, 2007).Google Scholar
  36. 36.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).CrossRefADSGoogle Scholar
  37. 37.
    R. Lange et al., Nucl. Instrum. Methods Phys. Res. A 423, 247 (1999).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Al-Abdullah
    • 1
    • 2
    Email author
  • S. Akhmadaliev
    • 1
  • M. Ayranov
    • 3
  • D. Bemmerer
    • 1
  • R. Dressler
    • 4
  • Z. Elekes
    • 5
  • N. Kivel
    • 6
  • K. Schmidt
    • 1
    • 7
  • D. Schumann
    • 4
  • M. Sobiella
    • 1
  • T. Stowasser
    • 4
  • M. P. Takács
    • 1
    • 7
  • K. Zuber
    • 7
  1. 1.Institute of Radiation PhysicsHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Physics DepartmentThe Hashemite UniversityZarqaJordan
  3. 3.European CommissionDirectorate-General for EnergyLuxembourgLuxembourg
  4. 4.Laboratory of Radiochemistry and Environmental ChemistryPaul Scherrer InstituteVilligen PSISwitzerland
  5. 5.Institute for Nuclear Research of the Hungarian Academy of Sciences (MTA ATOMKI)DebrecenHungary
  6. 6.Nuclear Energy and Safety, Hot Laboratory DivisionPaul Scherrer InstituteVilligen PSISwitzerland
  7. 7.Institute of Nuclear and Particle PhysicsTechnische Universität DresdenDresdenGermany

Personalised recommendations