Energy-independent PWA of the reaction γp → K+Λ

  • A. V. Anisovich
  • R. Beck
  • V. Burkert
  • E. Klempt
  • M. E. McCracken
  • V. A. Nikonov
  • A. V. Sarantsev
  • R. A. Schumacher
  • U. Thoma
Regular Article - Experimental Physics

Abstract

Using all recent data on the differential cross sections and spin observables for the reaction γpK+Λ, an energy-independent partial-wave analysis is performed for center-of-mass energies from 1.462 to 1.662 GeV. The analysis requires multipoles up to L = 2; there is no evidence that the fit requires multipoles with L = 3. At present the available data allow us to extract the dominant multipoles only. These are compatible with the multipoles obtained in the energy-dependent fit. This result supports the reliability of the Bonn-Gatchina energy-dependent results.

References

  1. 1.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    S. Capstick, W. Roberts, Phys. Rev. D 47, 1994 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    S. Capstick, W. Roberts, Phys. Rev. D 57, 4301 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    S. Capstick, W. Roberts, Phys. Rev. D 58, 074011 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957).ADSMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    W.-T. Chiang, F. Tabakin, Phys. Rev. C 55, 2054 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    E. Barrelet, Nuovo Cimento A 8, 331 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).Google Scholar
  9. 9.
    Y. Wunderlich, R. Beck, L. Tiator, Ambiguities of the single spin observables in a truncated partial wave expansion for photoproduction of pseudoscalar mesons, arXiv:1312.0245 [nucl-th].
  10. 10.
    R. Beck et al., Phys. Rev. Lett. 78, 606 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    G. Blanpied et al., Phys. Rev. Lett. 79, 4337 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    CBELSA/TAPS Collaboration (Jan Hartmann et al.), Phys. Rev. Lett. 113, 062001 (2014).CrossRefGoogle Scholar
  13. 13.
    A.M. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J. Phys. G 38, 053001 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    T. Mart, C. Bennhold, Phys. Rev. C 61, 012201 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    F.X. Lee, T. Mart, C. Bennhold, L.E. Wright, Nucl. Phys. A 695, 237 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    SAPHIR Collaboration (K.H. Glander et al.), Eur. Phys. J. A 19, 251 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    M. Guidal, J.-M. Laget, M. Vanderhaeghen, Phys. Rev. C 68, 058201 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    S. Janssen, J. Ryckebusch, D. Debruyne, T. Van Cauteren, Phys. Rev. C 65, 015201 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    T. Corthals, J. Ryckebusch, T. Van Cauteren, Phys. Rev. C 73, 045207 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    R.A. Schumacher, M.M. Sargsian, Phys. Rev. C 83, 025207 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    B. Julia-Diaz, B. Saghai, T.-S.H. Lee, F. Tabakin, Phys. Rev. C 73, 055204 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    CLAS Collaboration (R. Bradford et al.), Phys. Rev. C 73, 035202 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    CLAS Collaboration (J.W.C. McNabb et al.), Phys. Rev. C 69, 042201 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    T. Mart, A. Sulaksono, Phys. Rev. C 74, 055203 (2006) and references therein.ADSCrossRefGoogle Scholar
  25. 25.
    A.V. Sarantsev, V.A. Nikonov, A.V. Anisovich, E. Klempt, U. Thoma, Eur. Phys. J. A 25, 3 (2005).CrossRefGoogle Scholar
  26. 26.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Anisovich, V. Kleber, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 34, 243 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    CLAS Collaboration (R. Bradford et al.), Phys. Rev. C 75, 035205 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    CLAS Collaboration (M.E. McCracken et al.), Phys. Rev. C 81, 025201 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 88 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 49, 158 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    GRAAL Collaboration (A. Lleres et al.), Eur. Phys. J. A 31, 79 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    GRAAL Collaboration (A. Lleres et al.), Eur. Phys. J. A 39, 149 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    Crystal Ball Collaboration (T.C. Jude), K + Λ and K + Σ 0 photoproduction with fine center-of-mass energy resolution, arXiv:1308.5659 [nucl-ex].
  35. 35.
    D. Drechsel, O. Hanstein, S.S. Kamalov, L. Tiator, Nucl. Phys. A 645, 145 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    C.G. Fasano, F. Tabakin, B. Saghai, Phys. Rev. C 46, 2430 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    R.L. Workman, W.J. Briscoe, M.W. Paris, I.I. Strakovsky, Phys. Rev. C 85, 025201 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    R.G. Moorhouse, Phys. Rev. Lett. 16, 772 (1966).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. V. Anisovich
    • 1
    • 2
  • R. Beck
    • 1
  • V. Burkert
    • 3
  • E. Klempt
    • 1
  • M. E. McCracken
    • 4
    • 5
  • V. A. Nikonov
    • 1
    • 2
  • A. V. Sarantsev
    • 1
    • 2
  • R. A. Schumacher
    • 5
  • U. Thoma
    • 1
  1. 1.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.Petersburg Nuclear Physics InstituteGatchinaRussia
  3. 3.Jefferson LabNewport NewsUSA
  4. 4.Washington & Jefferson CollegeWashingtonUSA
  5. 5.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations