Advertisement

Quadrupole deformation in \( \Lambda\)-hypernuclei

  • Bipasha BhowmickEmail author
  • Abhijit Bhattacharyya
  • G. Gangopadhyay
Regular Article - Theoretical Physics

Abstract.

Shapes of light normal nuclei and \( \Lambda\) -hypernuclei are investigated using the relativistic mean-field approach. The FSUGold parametrization is used for this purpose. The addition of a \( \Lambda\) is found to change the shape of the energy surface towards positive deformation, i.e., prolate shape. The deformation in a \( \Lambda\) -hypernucleus, when the hyperon is in the first excited state, is also discussed. The effect of the inclusion of the hyperon on the nuclear radius is generally small with one exception.

Keywords

Prolate Quadrupole Deformation Total Binding Energy Nucleon Density Core Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Hiyama, M. Kamimura, K. Miyazaki, T. Motoba, Phys. Rev. C 59, 2351 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    K. Tanida et al., Phys. Rev. Lett. 86, 1982 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 53, 2075 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    H.F. Lu, J. Meng, S.Q. Zhang, S.G. Zhou, Eur. Phys. J. A 17, 19 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    X.-R. Zhou, A. Polls, H.-J. Schulze, I. Vidaña, Phys. Rev. C 78, 054306 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B. Bhowmick, A. Bhattacharyya, G. Gangopadhyay, Int. J. Mod. Phys. E 22, 1350012 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Motoba, H. Bando, K. Ikeda, Prog. Theor. Phys. 70, 189 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    T. Motoba, H. Bando, K. Ikeda, Prog. Theor. Phys. 71, 222 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    T. Motoba, H. Bando, K. Ikeda, T. Yamada, Prog. Theor. Phys. Suppl. 81, Chap. 3 (1985)Google Scholar
  10. 10.
    O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006) and references thereinADSCrossRefGoogle Scholar
  11. 11.
    X.R. Zhou, H.-J. Schulze, H. Sagawa, C.X. Wu, E.G. Zhao, Phys. Rev. C 76, 034312 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Win, K. Hagino, Phys. Rev. C 78, 054311 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Isaka, M. Kimura, A. Dote, A. Ohnishi, Phys. Rev. C 83, 044323 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    H. Shen, F. Yang, H. Toki, Prog. Theor. Phys. 115, 325 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    B. Bhowmick, A. Bhattacharyya, G. Gangopadhyay, Int. J. Mod. Phys. E 21, 1250069 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    G. Gangopadhyay, Phys. Rev. C 59, 2541 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    H. Häkkinen, J. Kolehmainen, M. Koskinen, P.O. Lipas, M. Manninen, Phys. Rev. Lett. 78, 1034 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    P. Arumugam, T.K. Jha, S.K. Patra, arXiv:nucl-th/0311091
  21. 21.
    W.H. Bassichis, L. Wilets, Phys. Rev. Lett. 27, 1451 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    M. Juric et al., Nucl. Phys. B 52, 1 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    M.T. Win, K. Hagino, T. Koike, Phys. Rev. C 83, 014301 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    B. Lu, E. Zhao, S. Zhou, Phys. Rev. C 84, 014328 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R. Xu, C. Wu, Z. Ren, J. Phys. G: Nucl. Part. Phys. 39, 085107 (2012)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bipasha Bhowmick
    • 1
    Email author
  • Abhijit Bhattacharyya
    • 1
  • G. Gangopadhyay
    • 1
  1. 1.Department of PhysicsUniversity of CalcuttaKolkataIndia

Personalised recommendations