Advertisement

Stochastic quantum dynamics beyond mean field

  • Denis LacroixEmail author
  • Sakir Ayik
Review

Abstract

Mean-field approaches where a complex fermionic many-body problem is replaced by an ensemble of independent particles in a self-consistent mean field can describe many static and dynamical aspects. It generally provides a rather good approximation for the average properties of one-body degrees of freedom. However, the mean-field approximation generally fails to produce quantum fluctuations of collective motion. To overcome this difficulty, noise can be added to the mean-field theory leading to a stochastic description of the many-body problem. In the present work, we summarize recent progress in this field and discuss approaches where fluctuations have been added either to the initial time, like in the stochastic mean-field theory or continuously in time as in the stochastic time-dependent Hartree-Fock. In some cases, the initial problem can even be reformulated exactly by introducing Quantum Monte Carlo methods in real time. The possibility to describe superfluid systems is also invoked. Successes and shortcomings of the different beyond mean-field theories are discussed and illustrated.

References

  1. 1.
    P. Bonche, S.E. Koonin, J.W. Negele, Phys. Rev. C 13, 1226 (1976).ADSGoogle Scholar
  2. 2.
    K.-H. Kim, T. Otsuka, P. Bonche, J. Phys. G 23, 1267 (1997).ADSGoogle Scholar
  3. 3.
    C. Simenel, Ph. Chomaz, G. de France, Phys. Rev. Lett. 86, 2971 (2001).ADSGoogle Scholar
  4. 4.
    T. Nakatsukasa, K. Yabana, Phys. Rev. C 71, 024301 (2005).ADSGoogle Scholar
  5. 5.
    J.A. Maruhn, P.-G. Reinhard, P.D. Stevenson, J.R. Stone, M.R. Strayer, Phys. Rev. C 71, 064328 (2005).ADSGoogle Scholar
  6. 6.
    A.S. Umar, V.E. Oberacker, Phys. Rev. C 71, 034314 (2005).ADSGoogle Scholar
  7. 7.
    K. Washiyama, D. Lacroix, Phys. Rev. C 78, 024610 (2008).ADSGoogle Scholar
  8. 8.
    C. Simenel, D. Lacroix, B. Avez, Quantum Many-body Dynamics: Applications to Nuclear Reactions (VDM Verlag, Sarrebruck, Germany, 2010).Google Scholar
  9. 9.
    C. Simenel, Eur. Phys. J. A 48, 152 (2012).ADSGoogle Scholar
  10. 10.
    C. Simenel, arXiv:1211.2387.
  11. 11.
    Y. Hashimoto, K. Nodeki, arXiv:0707.3083.
  12. 12.
    B. Avez, C. Simenel, Ph. Chomaz, Phys. Rev. C 78, 044318 (2008).ADSGoogle Scholar
  13. 13.
    S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y. Hashimoto, K. Yabana, Phys. Rev. C 82, 034306 (2010).ADSGoogle Scholar
  14. 14.
    I. Stetcu, A. Bulgac, P. Magierski, K.J. Roche, Phys. Rev. C 84, 051309 (2011).ADSGoogle Scholar
  15. 15.
    G. Scamps, Denis Lacroix, G.F. Bertsch, K. Washiyama, Phys. Rev. C 85, 034328 (2012).ADSGoogle Scholar
  16. 16.
    S. Ebata, in Proceedings of the Conference on Computational Physics 2012 (CCP2012), arXiv:1211.6812.
  17. 17.
    G. Scamps, Denis Lacroix, Phys. Rev. C 87, 014605 (2013).ADSGoogle Scholar
  18. 18.
    A. Bulgac, Annu. Rev. Nucl. Part. Sci. 63, 97 (2013).ADSGoogle Scholar
  19. 19.
    J.W. Negele, Rev. Mod. Phys. 54, 913 (1982).ADSGoogle Scholar
  20. 20.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Spring-Verlag, New-York, 1980).Google Scholar
  21. 21.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).ADSGoogle Scholar
  22. 22.
    D. Lacroix, S. Ayik, Ph. Chomaz, Prog. Part. Nucl. Phys. 52, 497 (2004).ADSGoogle Scholar
  23. 23.
    G. Scamps, D. Lacroix, Phys. Rev. C 88, 044310 (2013).ADSGoogle Scholar
  24. 24.
    A.K. Kerman, S.E. Koonin, Ann. Phys. (NY) 100, 332 (1976).ADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, Massachusetts, 1986).Google Scholar
  26. 26.
    S. Drodz, M. Ploszajczak, E. Caurier, Ann. Phys. (NY) 171, 108 (1986).ADSGoogle Scholar
  27. 27.
    H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000).ADSGoogle Scholar
  28. 28.
    Ph. Chomaz, Ann. Phys. (Fr) 21, 669 (1996).ADSGoogle Scholar
  29. 29.
    C. Simenel, B. Avez, Int. J. Mod. Phys. E 17, 31 (2008).ADSGoogle Scholar
  30. 30.
    D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 89 (1928).ADSzbMATHGoogle Scholar
  31. 31.
    V. Fock, Z. Phys. 61, 126 (1930).ADSzbMATHGoogle Scholar
  32. 32.
    P.A.M. Dirac, Proc. Camb. Philos. Soc. 26, 376 (1930).ADSzbMATHGoogle Scholar
  33. 33.
    D.J. Thouless, Nucl. Phys. 21, 225 (1960).zbMATHMathSciNetGoogle Scholar
  34. 34.
    H. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).Google Scholar
  35. 35.
    P.-C. Lichtner, J.-J. Griffin, Phys. Rev. Lett. 37, 1521 (1976).ADSGoogle Scholar
  36. 36.
    N.N. Bogoliubov, J. Phys. (URSS) 10, 256 (1946).Google Scholar
  37. 37.
    H. Born, H.S. Green, Proc. R. Soc. A 188, 10 (1946).ADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    J.G. Kirwood, J. Chem. Phys. 14, 180 (1946).ADSGoogle Scholar
  39. 39.
    W. Cassing, U. Mosel, Prog. Part. Nucl. Phys. 25, 235 (1990).ADSGoogle Scholar
  40. 40.
    P.-G. Reinhard, C. Toepffer, Int. J. Mod. Phys. E 3, 435 (1994).ADSGoogle Scholar
  41. 41.
    Y. Abe, S. Ayik, P.-G. Reinhard, E. Suraud, Phys. Rep. 275, 49 (1996).ADSMathSciNetGoogle Scholar
  42. 42.
    M. Tohyama, S. Takahara, Prog. Theor. Phys. 112, 499 (2004).ADSzbMATHGoogle Scholar
  43. 43.
    A. Peter, W. Cassing, J.M. Hauser, A. Pfitzner, Nucl. Phys. A 573, 93 (1994).ADSGoogle Scholar
  44. 44.
    F.V. De Blasio, W. Cassing, M. Tohyama, P.F. Bortignon, R. Broglia, Phys. Rev. Lett. 68, 1663 (1992).ADSGoogle Scholar
  45. 45.
    H.-G. Luo, W. Cassing, S.-J. Wang, Nucl. Phys. A 652, 164 (1999).ADSGoogle Scholar
  46. 46.
    M. Tohyama, A.S. Umar, Phys. Lett. B 516, 415 (2001).ADSGoogle Scholar
  47. 47.
    M. Tohyama, A.S. Umar, Phys. Lett. B 549, 72 (2002).ADSGoogle Scholar
  48. 48.
    M. Tohyama, A.S. Kumar, Phys. Rev. C 65, 037601 (2002).ADSGoogle Scholar
  49. 49.
    M. Assié, D. Lacroix, Phys. Rev. Lett. 102, 202501 (2009).ADSGoogle Scholar
  50. 50.
    C.Y. Wong, H.H.K. Tang, Phys. Rev. Lett. 40, 1070 (1978).ADSGoogle Scholar
  51. 51.
    C.Y. Wong, H.H.K. Tang, Phys. Rev. C 20, 1419 (1979).ADSGoogle Scholar
  52. 52.
    P. Danielewicz, Ann. Phys. 152, 239 (1984).ADSGoogle Scholar
  53. 53.
    P. Danielewicz, Ann. Phys. 197, 154 (1990).ADSzbMATHGoogle Scholar
  54. 54.
    W. Botermans, R. Malfliet, Phys. Rep. 198, 115 (1990).ADSGoogle Scholar
  55. 55.
    S. Ayik, Z. Phys. A 298, 83 (1980).ADSGoogle Scholar
  56. 56.
    S. Ayik, C. Gregoire, Phys. Lett. B 212, 269 (1988).ADSGoogle Scholar
  57. 57.
    S. Ayik, C. Gregoire, Nucl. Phys. A 513, 187 (1990).ADSGoogle Scholar
  58. 58.
    J. Randrup, B. Remaud, Nucl. Phys. A 514, 339 (1990).ADSGoogle Scholar
  59. 59.
    D. Lacroix, Ph. Chomaz, S. Ayik, Nucl. Phys. A 651, 369 (1999).ADSGoogle Scholar
  60. 60.
    K. Goeke, P.G. Reinhard, Ann. Phys. (NY) 124, 249 (1980).ADSGoogle Scholar
  61. 61.
    K. Goeke, P.G. Reinhard, D.J. Rowe, Nucl. Phys. A 359, 408 (1981).ADSGoogle Scholar
  62. 62.
    P.G. Reinhard, K. Goeke, Rep. Prog. Phys. 50, 1 (1987).ADSGoogle Scholar
  63. 63.
    H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005).ADSGoogle Scholar
  64. 64.
    S. Ayik, Phys. Lett. B 658, 174 (2008).ADSzbMATHMathSciNetGoogle Scholar
  65. 65.
    M.F. Herman, E. Kluk, Chem. Phys. 91, 27 (1984).ADSGoogle Scholar
  66. 66.
    K.G. Kay, J. Chem. Phys. 100, 4432 (1994).ADSGoogle Scholar
  67. 67.
    K.G. Kay, J. Chem. Phys. 101, 2250 (1994).ADSGoogle Scholar
  68. 68.
    R. Balian, M. Vénéroni, Ann. Phys. (NY) 164, 334 (1985).ADSGoogle Scholar
  69. 69.
    W. Norenberg, Phys. Lett. B 104, 107 (1981).ADSGoogle Scholar
  70. 70.
    S. Ayik, W. Norenberg, Z. Phys. A 309, 121 (1982).ADSGoogle Scholar
  71. 71.
    H. Hofmann, P.J. Siemens, Nucl. Phys. A 257, 165 (1976).ADSGoogle Scholar
  72. 72.
    N. Takigawa, S. Ayik, K. Washiyama, S. Kimura, Phys. Rev. C 69, 054605 (2004).ADSGoogle Scholar
  73. 73.
    S. Ayik, B. Yilmaz, A. Gokalp, O. Yilmaz, N. Takigawa, Phys. Rev. C 71, 054611 (2005).ADSGoogle Scholar
  74. 74.
    C.W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).Google Scholar
  75. 75.
    U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999).Google Scholar
  76. 76.
    D. Lacroix, S. Ayik, B. Yilmaz, Phys. Rev. C 85, 041602 (2012).ADSGoogle Scholar
  77. 77.
    P. Bonche, H. Flocard, Nucl. Phys. A 437, 189 (1985).ADSGoogle Scholar
  78. 78.
    Denis Lacroix, Danilo Gambacurta, Sakir Ayik, Phys. Rev. C 87, 061302(R) (2013).ADSGoogle Scholar
  79. 79.
    R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964).MathSciNetGoogle Scholar
  80. 80.
    R.W. Richardson, Phys. Rev. 141, 949 (1966).ADSGoogle Scholar
  81. 81.
    R.W. Richardson, J. Math. Phys. 9, 1327 (1968).ADSGoogle Scholar
  82. 82.
    S. Ayik, K. Washiyama, D. Lacroix, Phys. Rev. C 79, 054606 (2009).ADSGoogle Scholar
  83. 83.
    K. Washiyama, S. Ayik, D. Lacroix, Phys. Rev. C 80, 031602(R) (2009).ADSGoogle Scholar
  84. 84.
    K. Washiyama, D. Lacroix, S. Ayik, Phys. Rev. C 79, 024609 (2009).ADSGoogle Scholar
  85. 85.
    B. Yilmaz, S. Ayik, D. Lacroix, K. Washiyama, Phys. Rev. C 83, 064615 (2011).ADSGoogle Scholar
  86. 86.
    S. Ayik, N. Er, O. Yilmaz, A. Gokalp, Nucl. Phys. A 812, 44 (2008).ADSGoogle Scholar
  87. 87.
    S. Ayik, O, Yilmaz, N. Er, A. Gokalp, P. Ring, Phys. Rev. C 80, 034613 (2009).ADSGoogle Scholar
  88. 88.
    S. Ayik, O. Yilmaz, F. Acar, B. Danisman, N. Er, A. Gokalp, Nucl. Phys. A 859, 73 (2011).ADSGoogle Scholar
  89. 89.
    O. Yilmaz, S. Ayik, A. Gokalp, Eur. Phys. J. A 47, 123 (2011).ADSGoogle Scholar
  90. 90.
    O. Yilmaz, S. Ayik, F. Acar, S. Saatci, A. Gokalp, Eur. Phys. J. A 49, 33 (2013).ADSGoogle Scholar
  91. 91.
    A.S. Umar, V.E. Oberacker, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 85, 017602 (2012).ADSGoogle Scholar
  92. 92.
    A.S. Umar, V.E. Oberacker, Phys. Rev. C 74, 021601(R) (2006).ADSGoogle Scholar
  93. 93.
    A.S. Umar, V.E. Oberacker, Phys. Rev. C 74, 021601(R) (2006).ADSGoogle Scholar
  94. 94.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965).ADSzbMATHGoogle Scholar
  95. 95.
    P.-G. Reinhard, E. Suraud, Ann. Phys. (NY) 216, 98 (1992).ADSzbMATHMathSciNetGoogle Scholar
  96. 96.
    D. Lacroix, Phys. Rev. C 73, 044311 (2006).ADSGoogle Scholar
  97. 97.
    O. Kuebler, H.D. Zeh, Ann. Phys. (NY) 76, 405 (1973).ADSGoogle Scholar
  98. 98.
    E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, New York, 2003).Google Scholar
  99. 99.
    P.-G. Reinhard, E. Suraud, Nucl. Phys. A 545, 59c (1992).ADSGoogle Scholar
  100. 100.
    R. Balian, M. Veneroni, Ann. Phys. (NY) 135, 270 (1981).ADSMathSciNetGoogle Scholar
  101. 101.
    H.A. Weidenmüller, Prog. Part. Nucl. Phys. 3, 49 (1980).ADSGoogle Scholar
  102. 102.
    G. Lindblad, Commun. Math. Phys. 40, 147 (1975).ADSzbMATHMathSciNetGoogle Scholar
  103. 103.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1975).ADSMathSciNetGoogle Scholar
  104. 104.
    S.E. Koonin, D.J. Dean, K. Langanke, Annu. Rev. Nucl. Part. Sci. 47, 463 (1997).ADSGoogle Scholar
  105. 105.
    O. Juillet, P. Chomaz, Phys. Rev. Lett. 88, 142503 (2002).ADSGoogle Scholar
  106. 106.
    L. Diosi, Phys. Lett. A 114, 451 (1986).ADSMathSciNetGoogle Scholar
  107. 107.
    H. Carmichael, An Open Systems Approach to Quantum Optics, in Lecture Notes in Physics (Springer-Verlag, Berlin, 1993).Google Scholar
  108. 108.
    M. Rigo, N. Gisin, Quantum Semiclass. Opt. 8, 255 (1996).ADSMathSciNetGoogle Scholar
  109. 109.
    M.B. Plenio, P.L. Knight, Rev. Mod. Phys. 70, 101 (1998).ADSGoogle Scholar
  110. 110.
    W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1985).Google Scholar
  111. 111.
    P. Grange, H.A. Weidenmuller, G. Wolschin, Ann. Phys. (NY) 139, 190 (1981).ADSGoogle Scholar
  112. 112.
    D. Lacroix, Phys. Rev. C 71, 064322 (2005).ADSGoogle Scholar
  113. 113.
  114. 114.
    D. Lacroix, Phys. Rev. E 77, 041126 (2008).ADSGoogle Scholar
  115. 115.
    S. Levit, Phys. Rev. C 21, 1594 (1980).ADSMathSciNetGoogle Scholar
  116. 116.
    S. Levit, J.W. Negele, Z. Paltiel, Phys. Rev. C 21, 1603 (1980).ADSMathSciNetGoogle Scholar
  117. 117.
    J.W. Negele, H. Orland, Quantum Many-Particle Systems, in Frontiers in Physics (Addison-Wesley, Reading, MA, 1988).Google Scholar
  118. 118.
    I. Carusotto, Y. Castin, J. Dalibard, Phys. Rev. A 63, 023606 (2001).ADSGoogle Scholar
  119. 119.
    O. Juillet, F. Gulminelli, Ph. Chomaz, Phys. Rev. Lett. 92, 160401 (2004).ADSGoogle Scholar
  120. 120.
    H.-P. Breuer, Phys. Rev. A 69, 022115 (2004).ADSGoogle Scholar
  121. 121.
    H.P. Breuer, Eur. Phys. J. D 29, 106 (2004).ADSGoogle Scholar
  122. 122.
    D. Lacroix, Phys. Rev. A 72, 013805 (2005).ADSGoogle Scholar
  123. 123.
    D. Lacroix, Ann. Phys. (NY) 322, 2055 (2007).ADSzbMATHMathSciNetGoogle Scholar
  124. 124.
    P.-O. Löwdin, Phys. Rev. 97, 1490 (1955).ADSMathSciNetGoogle Scholar
  125. 125.
    W. Gardiner, P. Zoller, Quantum Noise, second edition (Springer-Verlag, Berlin-Heidelberg, 2000).Google Scholar
  126. 126.
    L.I. Plimak, M.K. Olsen, M.J. Collett, Phys. Rev. A 64, 025801 (2001).ADSGoogle Scholar
  127. 127.
    P. Deuar, P.D. Drummond, Comput. Phys. Commun. 142, 442 (2001).ADSzbMATHGoogle Scholar
  128. 128.
    P. Deuar, P.D. Drummond, Phys. Rev. A 66, 033812 (2002).ADSGoogle Scholar
  129. 129.
    R. Balian, Am. J. Phys. 67, 1078 (1999).ADSzbMATHMathSciNetGoogle Scholar
  130. 130.
    P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 62, 339 (2012).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut de Physique Nucléaire, IN2P3-CNRSUniversité Paris-SudOrsay CedexFrance
  2. 2.Physics DepartmentTennessee Technological UniversityCookevilleUSA

Personalised recommendations