Advertisement

Quartic oscillator potential in the γ-rigid regime of the collective geometrical model

  • R. BudacaEmail author
Regular Article - Theoretical Physics

Abstract

A prolate γ-rigid version of the Bohr-Mottelson Hamiltonian with a quartic anharmonic oscillator potential in β collective shape variable is used to describe the spectra for a variety of vibrational-like nuclei. Speculating the exact separation between the two Euler angles and the β variable, one arrives at a differential Schrödinger equation with a quartic anharmonic oscillator potential and a centrifugal-like barrier. The corresponding eigenvalue is approximated by an analytical formula depending only on a single parameter up to an overall scaling factor. The applicability of the model is discussed in connection to the existence interval of the free parameter, which is limited by the accuracy of the approximation, and by comparison with the predictions of the related X(3) and X(3)-β 2 models. The model is applied to qualitatively describe the spectra for nine nuclei which exhibit near-vibrational features.

Keywords

Oscillator Potential Interact Boson Model Parameter Free Model Anharmonic Potential Ground Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    F. Iachello, A. Arima, The Interacting Boson Approximation Model (Cambridge University Press, Cambridge, 1987).Google Scholar
  4. 4.
    A. Bohr, B. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953).Google Scholar
  5. 5.
    A. Bohr, B. Mottelson, Nuclear Structure, Vol. II (Benjamin, Reading, MA, 1975).Google Scholar
  6. 6.
    A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952).MathSciNetGoogle Scholar
  7. 7.
    L. Wilets, M. Jean, Phys. Rev. C 102, 788 (1956).ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    J.M. Arias et al., Phys. Rev. C 68, 041302R (2003).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    O.K. Vorov, V.G. Zelevinsky, Nucl. Phys. A 439, 207 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960).CrossRefGoogle Scholar
  11. 11.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 632, 238 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    G. Lévai, J.M. Arias, Phys. Rev. C 69, 014304 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Raduta, P. Buganu, Phys. Rev. C 83, 034313 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Raduta, P. Buganu, J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Raduta, R. Budaca, A. Faessler, J. Phys. G: Nucl. Part. Phys. 37, 085108 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Raduta, L. Pacearescu, V. Baran, Phys. Rev. C 67, 014301 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Raduta, F.D. Aaron, I.I. Ursu, Nucl. Phys. A 772, 20 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    G. Gneuss, W. Greiner, Nucl. Phys. A 171, 449 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    M. Seetharaman, S.S. Vasan, J. Math. Phys. 27, 1031 (1986).ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    J.B. Krieger, C. Rosenzweig, Phys. Rev. 164, 171 (1967).ADSCrossRefGoogle Scholar
  21. 21.
    M. Lakshmanan, P. Kaliappan, Phys. Rev. A 49, 3296 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    P.M. Mathews, M. Seetharaman, S. Raghavan, V.T.A. Bhargava, Pranama J. Phys. 32, 107 (1989).CrossRefGoogle Scholar
  23. 23.
    D.E. Hughes, J. Phys. B: At. Mol. Phys. 10, 3167 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    F.T. Hioe, Don Macmillen, E.W. Montroll, Phys. Rep. 43, 305 (1978).ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Phys. Rev. C 69, 014302 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terziev, Phys. Rev. C 69, 044316 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    P. Cejnar, J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    G.A. Lalazissis, S. Raman, At. Data Nucl. Data Tables 71, 1 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    B. Singh, Nucl. Data Sheets 109, 297 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    J. Blachot, Nucl. Data Sheets 111, 717 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    B. Singh, Nucl. Data Sheets 93, 33 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    M.R. Bhat, Nucl. Data Sheets 89, 797 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    A. Artna-Cohen, Nucl. Data Sheets 79, 1 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    C.W. Reich, Nucl. Data Sheets 110, 2257 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    E. Browne, J.K. Tuli, Nucl. Data Sheets 112, 1115 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 621, 102 (2005).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Horia Hulubei National Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania

Personalised recommendations