Advertisement

Energy measurement and fragment identification using digital signals from partially depleted Si detectors

  • for the FAZIA Collaboration
  • G. PasqualiEmail author
  • G. Pastore
  • N. Le Neindre
  • G. Ademard
  • S. Barlini
  • M. Bini
  • E. Bonnet
  • B. Borderie
  • R. Bougault
  • G. Casini
  • A. Chbihi
  • M. Cinausero
  • J. A. Dueñas
  • P. Edelbruck
  • J. D. Frankland
  • F. Gramegna
  • D. Gruyer
  • A. Kordyasz
  • T. Kozik
  • O. Lopez
  • T. Marchi
  • L. Morelli
  • A. Olmi
  • A. Ordine
  • M. Pârlog
  • S. Piantelli
  • G. Poggi
  • M. F. Rivet
  • E. Rosato
  • F. Salomon
  • G. Spadaccini
  • A. A. Stefanini
  • S. Valdrè
  • E. Vient
  • T. Twaróg
  • R. Alba
  • C. Maiolino
  • D. Santonocito
Special Article - Experimental Physics

Abstract

A study of identification properties of a Si-Si ΔE-E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the ΔE-E technique or the Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the ΔE-E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher than at full depletion. Good isotopic identification via PSA has been obtained from a partially depleted detector, whose doping uniformity is not good enough for isotopic identification at full depletion.

References

  1. 1.
    INDRA Collaboration (E. Galichet et al.), Phys. Rev. C 79, 064614 (2009) DOI:10.1103/PhysRevC.79.064614.ADSCrossRefGoogle Scholar
  2. 2.
    T.X. Liu et al., Phys. Rev. C 76, 034603 (2007) DOI:10.1103/PhysRevC.76.034603.ADSCrossRefGoogle Scholar
  3. 3.
    M. Di Toro et al., Eur. Phys. J. A 13, 155 (2002) DOI:10.1140/epja1339-28.ADSGoogle Scholar
  4. 4.
    Ad.R. Raduta, F. Gulminelli, Phys. Rev. C 75, 044605 (2007) DOI:10.1103/PhysRevC.75.044605.ADSCrossRefGoogle Scholar
  5. 5.
    J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995) DOI:10.1016/0168-9002(94)01543-0.ADSCrossRefGoogle Scholar
  6. 6.
    S. Aiello et al., Nucl. Phys. A 583, 461 (1995) DOI:10.1016/0375-9474(94)00705-R.ADSCrossRefGoogle Scholar
  7. 7.
    A. Moroni et al., Nucl. Instrum. Methods A 556, 516 (2006) DOI:10.1016/j.nima.2005.10.123.ADSCrossRefGoogle Scholar
  8. 8.
    S. Wuenschel et al., Nucl. Instrum. Methods A 604, 578 (2009) DOI:10.1016/j.nima.2009.03.187.ADSCrossRefGoogle Scholar
  9. 9.
    D.A. Bromley, IRE Trans. Nucl. Sci. 9, 135 (1962) DOI:10.1109/TNS2.1962.4315986.ADSCrossRefGoogle Scholar
  10. 10.
    FAZIA Collaboration, http://fazia2.in2p3.fr/spip.
  11. 11.
    FAZIA Collaboration (R. Bougault et al.), Eur. Phys. J. A 50, 47 (2014) DOI:10.1140/epja/i2014-14047-4.ADSCrossRefGoogle Scholar
  12. 12.
    FAZIA Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 654, 272 (2011) DOI:10.1016/j.nima.2011.06.063.ADSCrossRefGoogle Scholar
  13. 13.
    FAZIA Collaboration (S. Carboni et al.), Nucl. Instrum. Methods A 664, 251 (2012) DOI:10.1016/j.nima.2011.10.061.ADSCrossRefGoogle Scholar
  14. 14.
    FAZIA Collaboration (N. Le Neindre et al.), Nucl. Instrum. Methods A 701, 145 (2013) DOI:10.1016/j.nima.2012.11.005.ADSCrossRefGoogle Scholar
  15. 15.
    FAZIA Collaboration (G. Pasquali et al.), Eur. Phys. J. A 48, 158 (2012) DOI:10.1140/epja/i2012-12158-6.ADSCrossRefGoogle Scholar
  16. 16.
    M. Bruno et al., Eur. Phys. J. A 49, 128 (2013) DOI:10.1140/epja/i2013-13128-2.ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Dueñas et al., Nucl. Instrum. Methods A 714, 48 (2013) DOI:10.1016/j.nima.2013.02.032.ADSCrossRefGoogle Scholar
  18. 18.
    FBK web site, http://www.fbk.eu.
  19. 19.
    FAZIA Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 602, 501 (2009) DOI:10.1016/j.nima.2009.01.033.ADSCrossRefGoogle Scholar
  20. 20.
    FAZIA Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 605, 353 (2009) DOI:10.1016/j.nima.2009.03.247.ADSCrossRefGoogle Scholar
  21. 21.
    H. Hamrita et al., Nucl. Instrum. Methods A 531, 607 (2004) DOI:10.1016/j.nima.2004.05.112.ADSCrossRefGoogle Scholar
  22. 22.
    G. Pasquali et al., Nucl. Instrum. Methods A 570, 126 (2007) DOI:10.1016/j.nima.2006.10.008.ADSCrossRefGoogle Scholar
  23. 23.
    B.E. Baldinger, W. Franzen, Amplitude and Time Measurement in Nuclear Physics, in Advances in Electronics and Electron Physics, Vol. VIII (Academic Press, 1955).Google Scholar
  24. 24.
    B.W. Loo, F.S. Goulding, D. Gao, IEEE Trans. Nucl. Sci. NS-35, 114 (1988) DOI:10.1109/23.12686.ADSCrossRefGoogle Scholar
  25. 25.
    NUCL-EX Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 560, 524 (2006) DOI:10.1016/j.nima.2005.12.250.ADSCrossRefGoogle Scholar
  26. 26.
    F. Hubert et al., At. Data Nucl. Data Tables 46, 1 (1990) DOI:10.1016/0092-640X(90)90001-Z.ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Winyard, J.E. Lutkin, G.W. McBeth, Nucl. Instrum. Methods 95, 141 (1971) DOI:10.1016/0029-554X(71)90054-1.ADSCrossRefGoogle Scholar
  28. 28.
    B. Braunn et al., Nucl. Instrum. Methods B 269, 2676 (2011) DOI:10.1016/j.nimb.2011.08.010.ADSCrossRefGoogle Scholar
  29. 29.
    NUCL-EX Collaboration (L. Bardelli), in Proceedings of the International Workshop on Multifragmentation IWM2005 (2005).Google Scholar
  30. 30.
    Z. Sosin, Nucl. Instrum. Methods A 693, 170 (2012) DOI:10.1016/j.nima.2012.07.020.ADSCrossRefGoogle Scholar
  31. 31.
    M. Parlog et al., Nucl. Instrum. Methods A 613, 290 (2010) DOI:10.1016/j.nima.2009.12.010.ADSCrossRefGoogle Scholar
  32. 32.
    H. Hamrita et al., Nucl. Instrum. Methods A 642, 59 (2011) DOI:10.1016/j.nima.2011.03.053.ADSCrossRefGoogle Scholar
  33. 33.
    C.-M. Hsieh et al., IEEE Trans. Electron Devices ED-30, 686 (1983).ADSCrossRefGoogle Scholar
  34. 34.
    J.A. Zoutendyk, C.J. Malone, IEEE Trans. Nucl. Sci. NS-31, 1101 (1984).ADSCrossRefGoogle Scholar
  35. 35.
    H.L. Grubin et al., IEEE Trans. Nucl. Sci. NS-31, 1161 (1984).ADSCrossRefGoogle Scholar
  36. 36.
    F. Fontanelli et al., Nucl. Instrum. Methods A 269, 603 (1988).ADSCrossRefGoogle Scholar
  37. 37.
    Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing (Pearson, 2010).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • for the FAZIA Collaboration
  • G. Pasquali
    • 1
    • 2
    Email author
  • G. Pastore
    • 1
    • 2
  • N. Le Neindre
    • 3
  • G. Ademard
    • 4
  • S. Barlini
    • 1
    • 2
  • M. Bini
    • 1
    • 2
  • E. Bonnet
    • 5
  • B. Borderie
    • 4
  • R. Bougault
    • 3
  • G. Casini
    • 2
  • A. Chbihi
    • 5
  • M. Cinausero
    • 6
  • J. A. Dueñas
    • 7
  • P. Edelbruck
    • 4
  • J. D. Frankland
    • 5
  • F. Gramegna
    • 6
  • D. Gruyer
    • 5
  • A. Kordyasz
    • 8
  • T. Kozik
    • 9
  • O. Lopez
    • 3
  • T. Marchi
    • 6
  • L. Morelli
    • 10
  • A. Olmi
    • 2
  • A. Ordine
    • 11
  • M. Pârlog
    • 3
    • 12
  • S. Piantelli
    • 2
  • G. Poggi
    • 1
    • 2
  • M. F. Rivet
    • 4
  • E. Rosato
    • 11
    • 13
  • F. Salomon
    • 4
  • G. Spadaccini
    • 11
    • 13
  • A. A. Stefanini
    • 1
    • 2
  • S. Valdrè
    • 1
    • 2
  • E. Vient
    • 3
  • T. Twaróg
    • 9
  • R. Alba
    • 14
  • C. Maiolino
    • 14
  • D. Santonocito
    • 14
  1. 1.Dipartimento di FisicaUniversità di FirenzeSesto Fiorentino (FI)Italy
  2. 2.Sezione di FirenzeINFNSesto Fiorentino (FI)Italy
  3. 3.LPC, IN2P3-CNRSENSICAEN et Université de CaenCaen-CedexFrance
  4. 4.Institut de Physique Nucléaire, CNRS/IN2P3Université Paris-Sud 11Orsay cedexFrance
  5. 5.GANILCEA/DSM-CNRS/IN2P3Caen cedexFrance
  6. 6.INFN-LNL LegnaroLegnaro (Padova)Italy
  7. 7.Departamento de Fisica AplicadaFCCEE Universidad de HuelvaHuelvaSpain
  8. 8.Heavy Ion LaboratoryUniversity of WarsawWarsawPoland
  9. 9.Jagiellonian UniversityInstitute of Nuclear Physics IFJ-PANKrakowPoland
  10. 10.INFN and Università di BolognaBolognaItaly
  11. 11.Sezione di NapoliINFNNapoliItaly
  12. 12.“Horia Hulubei” National Institute of Physics and Nuclear EngineeringBucharestRomania
  13. 13.Dipartimento di FisicaUniversità di Napoli “Federico II”NapoliItaly
  14. 14.INFN-LNS CataniaCataniaItaly

Personalised recommendations