Advertisement

Lambda hyperon production and polarization in collisions of p(3.5 GeV)+Nb

  • HADES Collaboration
  • G. Agakishiev
  • O. Arnold
  • A. Balanda
  • D. Belver
  • A. V. Belyaev
  • J. C. Berger-Chen
  • A. Blanco
  • M. Böhmer
  • J. L. Boyard
  • P. Cabanelas
  • S. Chernenko
  • A. Dybczak
  • E. Epple
  • L. Fabbietti
  • O. V. Fateev
  • P. Finocchiaro
  • P. Fonte
  • J. Friese
  • I. Fröhlich
  • T. Galatyuk
  • J. A. Garzón
  • R. Gernhäuser
  • K. Göbel
  • M. Golubeva
  • D. González-Díaz
  • F. Guber
  • M. Gumberidze
  • T. Heinz
  • T. Hennino
  • R. Holzmann
  • A. Ierusalimov
  • I. Iori
  • A. Ivashkin
  • M. Jurkovic
  • B. Kämpfer
  • T. Karavicheva
  • I. Koenig
  • W. Koenig
  • B. W. Kolb
  • G. Kornakov
  • R. KotteEmail author
  • A. Krása
  • F. Krizek
  • R. Krücken
  • H. Kuc
  • W. Kühn
  • A. Kugler
  • A. Kurepin
  • V. Ladygin
  • R. Lalik
  • S. Lang
  • K. Lapidus
  • A. Lebedev
  • T. Liu
  • L. Lopes
  • M. Lorenz
  • L. Maier
  • A. Mangiarotti
  • J. Markert
  • V. Metag
  • B. Michalska
  • J. Michel
  • C. Müntz
  • L. Naumann
  • Y. C. Pachmayer
  • M. Palka
  • Y. Parpottas
  • V. Pechenov
  • O. Pechenova
  • J. Pietraszko
  • W. Przygoda
  • B. Ramstein
  • A. Reshetin
  • A. Rustamov
  • A. Sadovsky
  • P. Salabura
  • A. Schmah
  • E. Schwab
  • J. Siebenson
  • Yu. G. Sobolev
  • S. Spataro
  • B. Spruck
  • H. Ströbele
  • J. Stroth
  • C. Sturm
  • A. Tarantola
  • K. Teilab
  • P. Tlusty
  • M. Traxler
  • R. Trebacz
  • H. Tsertos
  • T. Vasiliev
  • V. Wagner
  • M. Weber
  • C. Wendisch
  • J. Wüstenfeld
  • S. Yurevich
  • Y. V. Zanevsky
Regular Article - Experimental Physics

Abstract.

Results on \( \Lambda\) hyperon production are reported for collisions of p(3.5 GeV) + Nb , studied with the High-Acceptance Di-Electron Spectrometer (HADES) at SIS18 at GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt. The transverse mass distributions in rapidity bins are well described by Boltzmann shapes with a maximum inverse slope parameter of about 90 MeV at a rapidity of y = 1.0, i.e. slightly below the center-of-mass rapidity for nucleon-nucleon collisions, \( y_{cm}=1.12\) . The rapidity density decreases monotonically with increasing rapidity within a rapidity window ranging from 0.3 to 1.3. The \( \Lambda\) phase-space distribution is compared with results of other experiments and with predictions of two transport approaches which are available publicly. None of the present versions of the employed models is able to fully reproduce the experimental distributions, i.e. in absolute yield and in shape. Presumably, this finding results from an insufficient modelling in the transport models of the elementary processes being relevant for \( \Lambda\) production, rescattering and absorption. The present high-statistics data allow for a genuine two-dimensional investigation as a function of phase space of the self-analyzing \( \Lambda\) polarization in the weak decay \( \Lambda\rightarrow p\pi^{-}\) . Finite negative values of the polarization in the order of 5-20% are observed over the entire phase space studied. The absolute value of the polarization increases almost linearly with increasing transverse momentum for p t > 300 MeV/c and increases with decreasing rapidity for y < 0.8 .

Keywords

Transverse Momentum Transport Approach Entire Phase Space Track Candidate Hyperon Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ch. Hartnack, H. Oeschler, Y. Leifels, E.L. Bratkovskaya, J. Aichelin, Phys. Rep. 510, 119 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A.B. Larionov, T. Leitner, J. Weil, U. Mosel, Phys. Rep. 512, 1 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C. Fuchs, Progr. Part. Nucl. Phys. 53, 113 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    B. Friman et al., Lect. Notes Phys. 814, 1 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    P. Senger, H. Ströbele, J. Phys. G: Nucl. Part. Phys. 25, R59 (1999)CrossRefGoogle Scholar
  6. 6.
    KaoS Collaboration (C. Sturm et al.), Phys. Rev. Lett. 86, 39 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    C. Fuchs, A. Faessler, E. Zabrodin, Y. Zheng, Phys. Rev. Lett. 86, 1974 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Ch. Hartnack, H. Oeschler, J. Aichelin, Phys. Rev. Lett. 96, 012302 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    G.Q. Li, C.M. Ko, Phys. Lett. B 349, 405 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    G.Q. Li, G.E. Brown, Phys. Rev. C 58, 1698 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    FOPI Collaboration (K. Wisniewski et al.), Eur. Phys. J. A 9, 515 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    KaoS Collaboration (A. Förster et al.), Phys. Rev. Lett. 91, 152301 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    FOPI Collaboration (M. Merschmeyer et al.), Phys. Rev. C 76, 024906 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    KaoS Collaboration (A. Förster et al.), Phys. Rev. C 75, 024906 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    FOPI Collaboration (M.L. Benabderrahmane et al.), Phys. Rev. Lett. 102, 182501 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 82, 044907 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    FOPI Collaboration (P. Crochet et al.), Phys. Lett. B 486, 6 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    KaoS Collaboration (F. Uhlig et al.), Phys. Rev. Lett. 95, 012301 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    FOPI Collaboration (Y. Leifels), J. Phys. G: Conf. Ser. 230, 012002 (2010)ADSGoogle Scholar
  22. 22.
    G.Q. Li, C.M. Ko, Phys. Rev. C 54, 1897 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    G.Q. Li, G.E. Brown, Nucl. Phys. A 636, 487 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Z.S. Wang, A. Faessler, C. Fuchs, T. Gross-Boelting, Nucl. Phys. A 645, 177 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    FOPI Collaboration (J.L. Ritman et al.), Z. Phys. A 352, 355 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    EOS Collaboration (M. Justice et al.), Phys. Lett. B 440, 12 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 47, 21 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    KaoS Collaboration (W. Scheinast et al.), Phys. Rev. Lett. 96, 072301 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    K. Heller, O.E. Overseth, G. Bunce, F. Dydak, H. Taureg, Phys. Lett. 68B, 480 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    K. Heller et al., Phys. Rev. Lett. 41, 607 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    F. Lomanno, D. Jensen, M.N. Kreisler, R. Poster, J. Humphrey, Phys. Rev. Lett. 43, 1905 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    F. Abe et al., Phys. Rev. Lett. 50, 1102 (1983)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Smith et al., Phys. Lett. B 185, 209 (1987)ADSCrossRefGoogle Scholar
  35. 35.
    B.E. Bonner et al., Phys. Rev. D 38, 729 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    NA48 Collaboration (V. Fanti et al.), Eur. Phys. J. C 6, 265 (1999)ADSGoogle Scholar
  37. 37.
    B. Lundberg et al., Phys. Rev. D 40, 3557 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    E766 Collaboration (J. Felix et al.), Phys. Rev. Lett. 76, 22 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    E766 Collaboration (J. Felix et al.), Phys. Rev. Lett. 82, 5213 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    E896 Collaboration (R. Bellwied), Heavy Ion Phys. 15, 437 (2002)Google Scholar
  41. 41.
    WA49 Collaboration (M.I. Adamovich et al.), Eur. Phys. J. C 32, 221 (2004)CrossRefGoogle Scholar
  42. 42.
    HERMES Collaboration (A. Airapetian et al.), Phys. Rev. D 76, 092008 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    DISTO Collaboration (S. Choi), Nucl. Phys. A 639, 1c (1998)ADSCrossRefGoogle Scholar
  44. 44.
    DISTO Collaboration (F. Balestra et al.), Phys. Rev. Lett. 83, 1534 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    C. Pizzolotto, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2007)Google Scholar
  46. 46.
    M. Röder, PhD thesis, Ruhr-Universität Bochum (2011)Google Scholar
  47. 47.
    COSY-TOF Collaboration (M. Röder, J. Ritman), EPJ Web of Conferences 37, 01008 (2012)CrossRefGoogle Scholar
  48. 48.
    J.W. Harris, A. Sandoval, R. Stock, H. Stroebele, R.E. Renfordt, J.V. Geaga, H.G. Pugh, L.S. Schroeder, K.L. Wolf, A. Dacal, Phys. Rev. Lett. 47, 229 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    J. Felix, Mod. Phys. Lett. 14, 827 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    H.-W. Siebert, Eur. Phys. J. ST 162, 147 (2008)CrossRefGoogle Scholar
  51. 51.
    S.B. Nurushev, M.F. Runtso, M.N. Strikhanov, Lect. Notes. Phys. 859, 343 (2013)CrossRefGoogle Scholar
  52. 52.
    B. Andersson, G. Gustafson, G. Ingelman, Phys. Lett. B 85, 417 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    Th.A. DeGrand, H.U. Miettinen, Phys. Rev. D 24, 2419 (1981)ADSCrossRefGoogle Scholar
  54. 54.
    L. Zuo-tang, C. Boros, Phys. Rev. Lett. 79, 3608 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    D. Hui, L. Zuo-tang, Phys. Rev. D 70, 014019 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Yamamoto, K. Kubo, H. Toki, Prog. Theor. Phys. 98, 95 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    K. Kubo, Y. Yamamoto, H. Toki, Prog. Theor. Phys. 101, 615 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    J.M. Laget, Phys. Lett. B 259, 24 (1991)ADSCrossRefGoogle Scholar
  59. 59.
    J. Soffer, N.A. Törnqvist, Phys. Rev. Lett. 68, 907 (1992)ADSCrossRefGoogle Scholar
  60. 60.
    A. Sibirtsev, W. Cassing, nucl-th/9802019 (1998)Google Scholar
  61. 61.
    A.M. Gasparian, J. Haidenbauer, C. Hanhart, L. Kondratyuk, J. Speth, Nucl. Phys. A 684, 397 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer, S. Krewald, Eur. Phys. J. A 27, 269 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    HADES Collaboration (G. Agakichiev et al.), Eur. Phys. J. A 41, 243 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    HADES Collaboration (G. Agakichiev et al.), Phys. Rev. Lett. 98, 052302 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    A. Schmah, PhD thesis, Techn. Universität Darmstadt (2008)Google Scholar
  66. 66.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 80, 025209 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 103, 132301 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 715, 304 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 88, 024904 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    HADES Collaboration (P. Tlusty et al.), Proc. Sci. PoS(Bormio2012), 019 (2012)Google Scholar
  71. 71.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)CrossRefGoogle Scholar
  72. 72.
    E. Dukes et al., Phys. Lett. B 193, 135 (1987)ADSCrossRefGoogle Scholar
  73. 73.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  75. 75.
  76. 76.
    I. Fröhlich et al., Proc. Sci. PoS(ACAT), 076 (2007)Google Scholar
  77. 77.
    C. Wendisch, PhD thesis, Techn. Universität Dresden (2014)Google Scholar
  78. 78.
    O. Arnold, Diploma thesis, Techn. Universität München (2013)Google Scholar
  79. 79.
    E896 Collaboration (S. Albergo et al.), Phys. Rev. Lett. 88, 062301 (2002)ADSCrossRefGoogle Scholar
  80. 80.
    E891 Collaboration (S. Ahmad et al.), Phys. Lett. B 382, 35 (1996)ADSCrossRefGoogle Scholar
  81. 81.
    E877 Collaboration (J. Barrette et al.), Phys. Rev. C 63, 014902 (2000)ADSCrossRefGoogle Scholar
  82. 82.
    K. Lapidus, J. Phys.: Conf. Ser. 503, 012018 (2017)ADSGoogle Scholar
  83. 83.
    P.Zh. Aslanyan, AIP Conf. Proc. 796, 184 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    P.Zh. Aslanyan, V.N. Emelyanenko, G.G. Rikhkvitzkaya, Phys. Part. Nucl. Lett. 4, 60 (2007)CrossRefGoogle Scholar
  85. 85.
    M. Anikina et al., Phys. Rev. Lett. 50, 1971 (1983)ADSCrossRefGoogle Scholar
  86. 86.
    M. Anikina et al., Z. Phys. C 25, 1 (1984)ADSCrossRefGoogle Scholar
  87. 87.
    K.J. Eskola, K. Kajantie, J. Lindfors, Nucl. Phys. B 323, 37 (1989)ADSCrossRefGoogle Scholar
  88. 88.
    J. Weil, H. van Hees, U. Mosel, Eur. Phys. J. A 48, 111 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 85, 035203 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 87, 025201 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • HADES Collaboration
  • G. Agakishiev
    • 7
  • O. Arnold
    • 9
  • A. Balanda
    • 3
  • D. Belver
    • 18
  • A. V. Belyaev
    • 7
  • J. C. Berger-Chen
    • 9
  • A. Blanco
    • 2
  • M. Böhmer
    • 10
  • J. L. Boyard
    • 16
  • P. Cabanelas
    • 18
  • S. Chernenko
    • 7
  • A. Dybczak
    • 3
  • E. Epple
    • 9
  • L. Fabbietti
    • 9
  • O. V. Fateev
    • 7
  • P. Finocchiaro
    • 1
  • P. Fonte
    • 2
  • J. Friese
    • 10
  • I. Fröhlich
    • 8
  • T. Galatyuk
    • 5
  • J. A. Garzón
    • 18
  • R. Gernhäuser
    • 10
  • K. Göbel
    • 8
  • M. Golubeva
    • 13
  • D. González-Díaz
    • 5
  • F. Guber
    • 13
  • M. Gumberidze
    • 5
    • 16
  • T. Heinz
    • 4
  • T. Hennino
    • 16
  • R. Holzmann
    • 4
  • A. Ierusalimov
    • 7
  • I. Iori
    • 12
  • A. Ivashkin
    • 13
  • M. Jurkovic
    • 10
  • B. Kämpfer
    • 6
  • T. Karavicheva
    • 13
  • I. Koenig
    • 4
  • W. Koenig
    • 4
  • B. W. Kolb
    • 4
  • G. Kornakov
    • 18
  • R. Kotte
    • 6
    Email author
  • A. Krása
    • 17
  • F. Krizek
    • 17
  • R. Krücken
    • 10
  • H. Kuc
    • 3
    • 16
  • W. Kühn
    • 11
  • A. Kugler
    • 17
  • A. Kurepin
    • 13
  • V. Ladygin
    • 7
  • R. Lalik
    • 9
  • S. Lang
    • 4
  • K. Lapidus
    • 9
  • A. Lebedev
    • 14
  • T. Liu
    • 16
  • L. Lopes
    • 2
  • M. Lorenz
    • 8
  • L. Maier
    • 10
  • A. Mangiarotti
    • 2
  • J. Markert
    • 8
  • V. Metag
    • 11
  • B. Michalska
    • 3
  • J. Michel
    • 8
  • C. Müntz
    • 7
  • L. Naumann
    • 6
  • Y. C. Pachmayer
    • 8
  • M. Palka
    • 3
  • Y. Parpottas
    • 15
  • V. Pechenov
    • 4
  • O. Pechenova
    • 8
  • J. Pietraszko
    • 4
  • W. Przygoda
    • 3
  • B. Ramstein
    • 16
  • A. Reshetin
    • 13
  • A. Rustamov
    • 8
  • A. Sadovsky
    • 13
  • P. Salabura
    • 3
  • A. Schmah
    • 9
  • E. Schwab
    • 4
  • J. Siebenson
    • 9
  • Yu. G. Sobolev
    • 17
  • S. Spataro
    • 11
  • B. Spruck
    • 11
  • H. Ströbele
    • 8
  • J. Stroth
    • 8
    • 4
  • C. Sturm
    • 4
  • A. Tarantola
    • 8
  • K. Teilab
    • 8
  • P. Tlusty
    • 17
  • M. Traxler
    • 4
  • R. Trebacz
    • 3
  • H. Tsertos
    • 15
  • T. Vasiliev
    • 7
  • V. Wagner
    • 17
  • M. Weber
    • 10
  • C. Wendisch
    • 6
  • J. Wüstenfeld
    • 6
  • S. Yurevich
    • 4
  • Y. V. Zanevsky
    • 7
  1. 1.INFNLaboratori Nazionali del SudCataniaItaly
  2. 2.LIP-Laboratório de Instrumentaçāo e Física Experimental de PartículasCoimbraPortugal
  3. 3.Smoluchowski Institute of PhysicsJagiellonian University of CracowKrakówPoland
  4. 4.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  5. 5.Technische Universität DarmstadtDarmstadtGermany
  6. 6.Institut für StrahlenphysikHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  7. 7.Joint Institute of Nuclear ResearchDubnaRussia
  8. 8.Institut für KernphysikJohann Wolfgang Goethe-UniversitätFrankfurtGermany
  9. 9.Excellence Cluster “Origin and Structure of the Universe”GarchingGermany
  10. 10.Physik Department E12Technische Universität MünchenGarchingGermany
  11. 11.II.Physikalisches InstitutJustus Liebig Universität GiessenGiessenGermany
  12. 12.INFNSezione di MilanoMilanoItaly
  13. 13.Institute for Nuclear ResearchRussian Academy of ScienceMoscowRussia
  14. 14.Institute of Theoretical and Experimental PhysicsMoscowRussia
  15. 15.Department of PhysicsUniversity of CyprusNicosiaCyprus
  16. 16.Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3Université Paris SudOrsay CedexFrance
  17. 17.Nuclear Physics InstituteAcademy of Sciences of Czech RepublicRezCzech Republic
  18. 18.LabCAF F. FísicaUniv. de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations