Truncation scheme of time-dependent density-matrix approach

Regular Article - Theoretical Physics

Abstract

A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by the antisymmetrized products of two-body density matrices, is proposed. This truncation scheme is tested for three model Hamiltonians. It is shown that the obtained results are in good agreement with the exact solutions.

Keywords

Density Matrix Hubbard Model Magnetic Dipole Moment Occupation Probability Reduce Density Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.J. Wang, W. Cassing, Ann. Phys. 159, 328 (1985).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    M. Gong, M. Tohyama, Z. Phys. A 335, 153 (1990).ADSGoogle Scholar
  3. 3.
    S. Takahara, M. Tohyama, P. Schuck, Phys. Rev. C 70, 057307 (2004).CrossRefADSGoogle Scholar
  4. 4.
    M. Tohyama, Phys. Rev. C 75, 044310 (2007).CrossRefADSGoogle Scholar
  5. 5.
    F.V. De Blasio, W. Cassing, M. Tohyama, P.F. Bortignon, R.A. Broglia, Phys. Rev. Lett. 68, 1663 (1992).CrossRefADSGoogle Scholar
  6. 6.
    A. Pfitzner, W. Cassing, A. Peter, Nucl. Phys. A 577, 753 (1994).CrossRefADSGoogle Scholar
  7. 7.
    M. Assié, D. Lacroix, Phys. Rev. Lett. 102, 202501 (2009).CrossRefADSGoogle Scholar
  8. 8.
    M. Tohyama, J. Phys. Soc. Jpn. 81, 054707 (2012).CrossRefADSGoogle Scholar
  9. 9.
    K.-J. Schmitt, P.-G. Reinhard, C. Toepffer, Z. Phys. A 336, 123 (1990).ADSGoogle Scholar
  10. 10.
    T. Gherega, R. Krieg, P.-G. Reinhard, C. Toepffer, Nucl. Phys. A 560, 166 (1993).CrossRefADSGoogle Scholar
  11. 11.
    M. Tohyama, P. Schuck, Eur. Phys. J. A 45, 257 (2010).CrossRefADSGoogle Scholar
  12. 12.
    M. Jemai, P. Schuck, At. Nucl. 74, 1139 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Tohyama, P. Schuck, S.J. Wang, Z. Phys. A 339, 341 (1991).CrossRefADSGoogle Scholar
  14. 14.
    S.J. Wang, Z. Wei, W. Cassing, Nucl. Phys. A 573, 245 (1994).CrossRefGoogle Scholar
  15. 15.
    M. Tohyama, Phys. Rev. A 71, 043613 (2005).CrossRefADSGoogle Scholar
  16. 16.
    M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951).CrossRefMATHMathSciNetADSGoogle Scholar
  17. 17.
    H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965).CrossRefMathSciNetGoogle Scholar
  18. 18.
    V.D. Barger, M.G. Olsson, Classical electricity and magnetism (Allyn and Bacon, Boston, 1987).Google Scholar
  19. 19.
    M. Jemai, P. Schuck, J. Dekelsky, R. Bennaceur, Phys. Rev. B 71, 085115 (2005).CrossRefADSGoogle Scholar
  20. 20.
    M. Tohyama, J. Phys. Soc. Jpn. 82, 124004 (2013).CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Kyorin University School of MedicineMitaka, TokyoJapan
  2. 2.Institut de Physique Nucléaire, IN2P3-CNRSUniversité Paris-SudOrsay CedexFrance
  3. 3.Laboratoire de Physique et de Modélisation des Milieux Condensés et Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations