Advertisement

High statistics study of the reaction γp → pπ0 η

  • The CBELSA/TAPS Collaboration
  • E. Gutz
  • V. Crede
  • V. Sokhoyan
  • H. van Pee
  • A. V. Anisovich
  • J. C. S. Bacelar
  • B. Bantes
  • O. Bartholomy
  • D. Bayadilov
  • R. Beck
  • Y. A. Beloglazov
  • R. Castelijns
  • H. Dutz
  • D. Elsner
  • R. Ewald
  • F. Frommberger
  • M. Fuchs
  • Ch. Funke
  • R. Gregor
  • A. B. Gridnev
  • W. Hillert
  • Ph. Hoffmeister
  • I. Horn
  • I. Jaegle
  • J. Junkersfeld
  • H. Kalinowsky
  • S. Kammer
  • V. Kleber
  • Frank Klein
  • Friedrich Klein
  • E. Klempt
  • M. Kotulla
  • B. Krusche
  • M. Lang
  • H. Löhner
  • I. V. Lopatin
  • S. Lugert
  • T. Mertens
  • J. G. Messchendorp
  • V. Metag
  • M. Nanova
  • V. A. Nikonov
  • D. Novinsky
  • R. Novotny
  • M. Ostrick
  • L. Pant
  • M. Pfeiffer
  • D. Piontek
  • A. Roy
  • A. V. Sarantsev
  • Ch. Schmidt
  • H. Schmieden
  • S. Shende
  • A. Süle
  • V. V. Sumachev
  • T. Szczepanek
  • A. Thiel
  • U. Thoma
  • D. Trnka
  • R. Varma
  • D. Walther
  • Ch. Wendel
  • A. Wilson
Regular Article - Experimental Physics

Abstract

Photoproduction off protons of the 0 η three-body final state was studied with the Crystal Barrel/TAPS detector, at the electron stretcher accelerator ELSA in Bonn, for incident energies from the π 0 η production threshold up to 2.5 GeV. Differential cross sections and the total cross sections are presented. The use of linearly polarized photons gives access to the polarization observables Σ, I s , and I c , the latter two characterize beam asymmetries in case of three-body final states. Δ(1232)η, N(1535)1/2 π, and pa 0(980) are the dominant isobars contributing to the reaction. The partial wave analysis confirms the existence of some nucleon and Δ resonances, for which so far only fair evidence was reported. A large number of decay modes of known nucleon and Δ resonances is presented. It is shown that detailed investigations of decay branching ratios may provide a key to unravelling the structure of nucleon and Δ resonances.

Keywords

Invariant Mass Decay Mode Pole Position Dalitz Plot Partial Wave Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.G. Edwards et al., Phys. Rev. D 84, 074508 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    V.V. Anisovich, M.A. Matveev, V.A. Nikonov, J. Nyiri, A.V. Sarantsev, Mesons and baryons: Systematization and methods of analysis (World Scientific, Hackensack, USA, 2008).Google Scholar
  3. 3.
    E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    L.Y. Glozman, W. Plessas, K. Varga, R.F. Wagenbrunn, Phys. Rev. D 58, 094030 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    U. Loring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    U. Loring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 447 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    S. Capstick, P.R. Page, Phys. Rev. C 66, 065204 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Dudek, R.G. Edwards, Phys. Rev. D 85, 054016 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C 62, 025207 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    I.G. Aznauryan et al., Phys. Rev. C 78, 045209 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    L.Y. Glozman, Phys. Lett. B 587, 69 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    L.Y. Glozman, Phys. Lett. B 475, 329 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    P. Bicudo, M. Cardoso, T. Van Cauteren, F.J. Llanes-Estrada, Phys. Rev. Lett. 103, 092003 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    R.L. Jaffe, Phys. Rep. 409, 1 (2005) (Nucl. Phys. Proc. Suppl. 142.ADSCrossRefGoogle Scholar
  18. 18.
    L.Y. Glozman, Phys. Rep. 444, 1 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    L.Y. Glozman, A.V. Nefediev, Nucl. Phys. A 807, 38 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    D. Berenstein, C.P. Herzog, I.R. Klebanov, JHEP 06, 047 (2002).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    F. Wilczek, Diquarks as inspiration and as objects, in From fields to strings, edited by M. Shifman (World Scientific, Hackensack, USA, 2006).Google Scholar
  23. 23.
    H. Forkel, E. Klempt, Phys. Lett. B 679, 77 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    S. Weinberg, Physica A 96, 327 (1979).ADSCrossRefGoogle Scholar
  25. 25.
    V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706, 431 (2002) 765.ADSCrossRefGoogle Scholar
  27. 27.
    M. Bando, T. Kugo, S. Uehara, K. Yamawaki, T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    E. Oset et al., Prog. Theor. Phys. Suppl. 186, 124 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    G. Höhler, Handbook Of Pion Nucleon Scattering (Karlsruhe, Fachinformations Zentrum Energie, 1979).Google Scholar
  30. 30.
    R.E. Cutkosky, Pion - Nucleon Partial Wave Analysis, in Proceedings of the International Conference on Baryon Resonances, Toronto, Canada, July 14-16, 1980 (Baryon, 1980).Google Scholar
  31. 31.
    R.A. Arndt et al., Phys. Rev. C 74, 045205 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, H. Schmieden, U. Thoma, Phys. Lett. B 711, 162 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    E. Klempt, B.C. Metsch, Eur. Phys. J. A 48, 127 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    V. Crede, W. Roberts, Rept. Prog. Phys. 76, 076301 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, D.B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Phys. Lett. B 711, 167 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    I. Horn et al., Eur. Phys. J. A 38, 173 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    I. Horn et al., Phys. Rev. Lett. 101, 202002 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    V. Sokhoyan, High statistics study of the reaction γpp 2π 0 in preparation.Google Scholar
  41. 41.
    C. Weinheimer et al., Nucl. Phys. A 721, 781 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    H. Forkel, M. Beyer, T. Frederico, JHEP 07, 077 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    S.J. Brodsky, G.F. de Teramond, PoS LC 2010, 070 (2010) and references therein, for a survey on light-front dynamics and AdS/QCD.Google Scholar
  46. 46.
    J. Ajaka et al., Phys. Rev. Lett. 100, 052003 (2008).ADSCrossRefGoogle Scholar
  47. 47.
    V.L. Kashevarov et al., Eur. Phys. J. A 42, 141 (2009).ADSCrossRefGoogle Scholar
  48. 48.
    W. Roberts, T. Oed, Phys. Rev. C 71, 055201 (2005).ADSCrossRefGoogle Scholar
  49. 49.
    E. Gutz et al., Phys. Lett. B 687, 11 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    M. Döring, E. Oset, U.-G. Meißner, Eur. Phys. J. A 46, 315 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    M. Döring, E. Oset, D. Strottman, Phys. Rev. C 73, 045209 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    W. Hillert, Eur. Phys. J. A 28S1, 139 (2006).ADSCrossRefGoogle Scholar
  53. 53.
    E. Aker et al., Nucl. Instrum. Methods A 321, 69 (1992).ADSCrossRefGoogle Scholar
  54. 54.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991).ADSCrossRefGoogle Scholar
  55. 55.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994).ADSCrossRefGoogle Scholar
  56. 56.
    D. Elsner et al., Eur. Phys. J. A 39, 373 (2009).ADSCrossRefGoogle Scholar
  57. 57.
    F.A. Natter, P. Grabmayr, T. Hehla, R.O. Owens, S. Wunderlich, Nucl. Instrum. Methods B 211, 465 (2003).ADSCrossRefGoogle Scholar
  58. 58.
    D. Elsner, Untersuchung kleiner Partialwellenbeiträge in der Nähe dominierender Resonanzbeiträge des Protons mit linear polarisierten Photonen, PhD thesis, Physikalisches Institut, Universität Bonn, 2007.Google Scholar
  59. 59.
    G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005).ADSCrossRefGoogle Scholar
  60. 60.
    A. Fösel, Entwicklung und Bau des Innendetektors für das Crystal Barrel Experiment an ELSA/Bonn, PhD thesis, Physikalisches Institut, Universität Erlangen, 2001.Google Scholar
  61. 61.
    O. Bartholomy, Test und Modifikation des Lichtpulsersystems für den CB-ELSA-Detektor, Diploma thesis, Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 2000.Google Scholar
  62. 62.
    S. Janssen, Entwicklung eines CPV-Systems für TAPS, Diploma thesis, II. Physikalisches Institut, Universität Giessen, 1998.Google Scholar
  63. 63.
    J. Junkersfeld, Kalibration des Crystal Barrel-ELSA Detektors mit Hilfe der Reaktion γp 0, Diploma thesis, Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 2000.Google Scholar
  64. 64.
    R. Castelijns, Photoproduction of strange mesons and hyperons in the proton, PhD thesis, Rijksuniversiteit Groningen, 2006.Google Scholar
  65. 65.
    H. van Pee et al., Eur. Phys. J. A 31, 61 (2007).ADSCrossRefGoogle Scholar
  66. 66.
    V. Crede et al., Phys. Rev. C 84, 055203 (2011).ADSCrossRefGoogle Scholar
  67. 67.
    E. Gutz et al., Eur. Phys. J. A 35, 291 (2008).ADSCrossRefGoogle Scholar
  68. 68.
    R.P. Worden, Nucl. Phys. B 37, 253 (1972).ADSCrossRefGoogle Scholar
  69. 69.
    A. Fix, H. Arenhövel, Phys. Rev. C 83, 015503 (2010).ADSCrossRefGoogle Scholar
  70. 70.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Phys. Lett. B 681, 26 (2009).ADSCrossRefGoogle Scholar
  71. 71.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009).ADSCrossRefGoogle Scholar
  72. 72.
    N. Kaiser, P.B. Siegel, W. Weise, Phys. Lett. B 362, 23 (1995).ADSCrossRefGoogle Scholar
  73. 73.
    U.-G. Meißner, J.A. Oller, Nucl. Phys. A 673, 311 (2000).ADSCrossRefGoogle Scholar
  74. 74.
    J. Nieves, E. Ruiz Arriola, Phys. Rev. D 64, 116008 (2001).ADSCrossRefGoogle Scholar
  75. 75.
    A.V. Anisovich, E. Klempt, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 24, 111 (2005).ADSCrossRefGoogle Scholar
  76. 76.
    A.V. Anisovich, A.V. Sarantsev, Eur. Phys. J. A 30, 427 (2006).ADSCrossRefGoogle Scholar
  77. 77.
    J.M. Blatt, V.F. Weisskopf, Theoretical nuclear physics (Wiley, 1952).Google Scholar
  78. 78.
    S.U. Chung, J. Brose, R. Hackmann, E. Klempt, S. Spanier, C. Strassburger, Ann. Phys. 4, 404 (1995).CrossRefGoogle Scholar
  79. 79.
    R.L. Workman, L. Tiator, A. Sarantsev, Phys. Rev. C 87, 068201 (2013).ADSCrossRefGoogle Scholar
  80. 80.
    U. Thoma, M. Fuchs, A.V. Anisovich, G. Anton, R. Bantes, O. Bartholomy, R. Beck, Y. Beloglazov et al., Phys. Lett. B 659, 87 (2008).ADSCrossRefGoogle Scholar
  81. 81.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 47, 27 (2011).ADSCrossRefGoogle Scholar
  82. 82.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 47, 153 (2011).ADSCrossRefGoogle Scholar
  83. 83.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 49, 158 (2013).ADSCrossRefGoogle Scholar
  84. 84.
    Particle Data Group Collaboration (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012).ADSCrossRefGoogle Scholar
  85. 85.
    J. Vandermeulen, Z. Phys. C 37, 563 (1988).ADSCrossRefGoogle Scholar
  86. 86.
    E. Klempt, C. Batty, J.-M. Richard, Phys. Rep. 413, 197 (2005).ADSCrossRefGoogle Scholar
  87. 87.
    P. Auger, J. Phys. Radium 6, 205 (1925).CrossRefzbMATHGoogle Scholar
  88. 88.
    L. Meitner, Z. Phys. A 11, 35 (1922).CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • The CBELSA/TAPS Collaboration
  • E. Gutz
    • 1
    • 2
  • V. Crede
    • 3
  • V. Sokhoyan
    • 1
  • H. van Pee
    • 1
  • A. V. Anisovich
    • 1
    • 4
  • J. C. S. Bacelar
    • 5
  • B. Bantes
    • 6
  • O. Bartholomy
    • 1
  • D. Bayadilov
    • 1
    • 4
  • R. Beck
    • 1
  • Y. A. Beloglazov
    • 4
  • R. Castelijns
    • 5
  • H. Dutz
    • 6
  • D. Elsner
    • 6
  • R. Ewald
    • 6
  • F. Frommberger
    • 6
  • M. Fuchs
    • 1
  • Ch. Funke
    • 1
  • R. Gregor
    • 2
  • A. B. Gridnev
    • 4
  • W. Hillert
    • 6
  • Ph. Hoffmeister
    • 1
  • I. Horn
    • 1
  • I. Jaegle
    • 7
  • J. Junkersfeld
    • 1
  • H. Kalinowsky
    • 1
  • S. Kammer
    • 6
  • V. Kleber
    • 6
  • Frank Klein
    • 6
  • Friedrich Klein
    • 6
  • E. Klempt
    • 1
  • M. Kotulla
    • 2
    • 7
  • B. Krusche
    • 7
  • M. Lang
    • 1
  • H. Löhner
    • 5
  • I. V. Lopatin
    • 4
  • S. Lugert
    • 2
  • T. Mertens
    • 7
  • J. G. Messchendorp
    • 5
  • V. Metag
    • 3
  • M. Nanova
    • 3
  • V. A. Nikonov
    • 1
    • 4
  • D. Novinsky
    • 1
    • 4
  • R. Novotny
    • 2
  • M. Ostrick
    • 6
  • L. Pant
    • 2
  • M. Pfeiffer
    • 2
  • D. Piontek
    • 1
  • A. Roy
    • 2
  • A. V. Sarantsev
    • 1
    • 4
  • Ch. Schmidt
    • 1
  • H. Schmieden
    • 6
  • S. Shende
    • 5
  • A. Süle
    • 6
  • V. V. Sumachev
    • 4
  • T. Szczepanek
    • 1
  • A. Thiel
    • 1
  • U. Thoma
    • 1
  • D. Trnka
    • 2
  • R. Varma
    • 2
  • D. Walther
    • 1
    • 6
  • Ch. Wendel
    • 1
  • A. Wilson
    • 1
    • 3
  1. 1.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.II. Physikalisches InstitutUniversität GießenGießenGermany
  3. 3.Department of PhysicsFlorida State UniversityTallahasseeUSA
  4. 4.Petersburg Nuclear Physics InstituteGatchinaRussia
  5. 5.Kernfysisch Versneller InstituutGroningenThe Netherlands
  6. 6.Physikalisches InstitutUniversität BonnBonnGermany
  7. 7.Institut für PhysikUniversität BaselBaselSwitzerland

Personalised recommendations