Electroweak measurements of neutron densities in CREX and PREX at JLab, USA

Regular Article - Experimental Physics
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on 208Pb and 48Ca , respectively; these are both doubly magic nuclei whose first excited state can be discriminated by the high-resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter 48Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.

References

  1. 1.
    X. Roca-Maza, arXiv:1307.3879 [nucl-th].
  2. 2.
    X. Roca-Maza et al., Phys. Rev. Lett. 106, 252501 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    X. Vinas, M. Centelles, X. Roca-Maza, M. Warda, Density dependence of the symmetry energy from neutron skin thickness in finite nuclei, arXiv:1308.1008 [nucl-th], contribution to this Topical Issue.
  4. 4.
    B. Frois et al., Phys. Rev. Lett. 38, 152 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    H. De Vries et al., At. Nucl. Data Tables 36, 495 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    I. Angelia, K.P. Marinova, At. Nucl. Data Tables 99, 69 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    C. Garcia-Recio, J. Nieves, E. Oset, Nucl. Phys. A 547, 473 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    L. Ray, W.R. Coker, G.W. Hoffmann, Phys. Rev. C 18, 2641 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    V.E. Starodubsky, N.M. Hintz, Phys. Rev. C 49, 2118 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    B.C. Clark, L.J. Kerr, S. Hama, Phys. Rev. C 67, 054605 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. Trzcinska et al., Phys. Rev. Lett. 87, 082501 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    H. Lenske, Hyperfine Interact. 194, 277 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Bernstein, W.A. Seidler, Phys. Lett. B 39, 583 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    A.M. Bernstein, W.A. Seidler, Phys. Lett. B 34, 569 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    A. Krasznahorkay et al., Nucl. Phys. A 371, 224 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    J. Piekarewicz, Symmetry energy constraints from giant resonances: A relativistic mean-field theory overview, arXiv:1307.7746 [nucl-th], contribution to this Topical Issue.
  18. 18.
    M. Warda, X. Vinas, X. Roca-Maza, M. Centelles, Phys. Rev. C 80, 024316 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    P. Danielewicz, Nulc. Phys. A 727, 233 (2003).ADSGoogle Scholar
  20. 20.
    Kelly Patton, Jonathan Engel, Gail C. McLaughlin, Nicolas Schunck, Phys. Rev. C 86, 024612 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    C.J. Horowitz, K.J. Coakley, D.N. McKinsey, Phys. Rev. D 68, 023005 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    K.A. Aniol et al., Phys. Rev. Lett. 82, 1096 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    K.A. Aniol et al., Phys. Rev. C 69, 065501 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    K.A. Aniol et al., Phys. Rev. Lett. 96, 022003 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    K.A. Aniol et al., Phys. Rev. Lett. 98, 032301 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Ahmed et al., Phys. Rev. Lett. 108, 102001 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    C.J. Horowitz, S.J. Pollock, P.A. Souder, R. Michaels, Phys. Rev. C 63, 025501 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    C.J. Horowitz et al., Phys. Rev. C 85, 032501 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    The PREX-II proposal, unpublished, available at hallaweb.jlab.org/parity/prex.Google Scholar
  31. 31.
    The CREX proposal, unpublished, available at hallaweb.jlab.org/parity/prex.Google Scholar
  32. 32.
  33. 33.
    T.W. Donnelly, J. Dubach, I. Sick, Nucl. Phys. A 503, 589 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    C.J. Horowitz, Phys. Rev. C 57, 3430 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    J. Erler, A. Kurylov, M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    R.D. McKeown, Phys. Lett. B 219, 140 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    D.T. Spayde et al., Phys. Lett. B 583, 79 (2004).ADSCrossRefGoogle Scholar
  39. 39.
    T. Ito et al., Phys. Rev. Lett. 92, 102003 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    D.H. Beck, Phys. Rev. D 39, 3248 (1989).ADSCrossRefGoogle Scholar
  41. 41.
    D.S. Armstrong et al., Phys. Rev. Lett. 95, 092001 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    D. Androic et al., Phys. Rev. Lett. 104, 012001 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    F.E. Maas et al., Phys. Rev. Lett. 93, 022002 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    F.E. Maas et al., Phys. Rev. Lett. 94, 152001 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    S. Baunack et al., Phys. Rev. Lett. 102, 151803 (2009).ADSCrossRefGoogle Scholar
  46. 46.
    J. Alcorn et al., Nucl. Instrum. Methods A 522, 294 (2004).ADSCrossRefGoogle Scholar
  47. 47.
    C.K. Sinclair et al., Phys. Rev. ST Accel. Beams 10, 023501 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    P.A. Adderley et al., Phys. Rev. ST Accel. Beams 13, 010101 (2010).ADSCrossRefGoogle Scholar
  49. 49.
    J.E. Wise et al., Phys. Rev. C 31, 1699 (1985).ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    J.M. Cavedon et al., Phys. Rev. Lett. 58, 195 (1987).ADSCrossRefGoogle Scholar
  51. 51.
    H.J. Emrich et al., Nucl. Phys. A 396, 401C (1983).ADSCrossRefGoogle Scholar
  52. 52.
    E.N.M. Quint et al., Phys. Rev. Lett. 57, 186 (1986).ADSCrossRefGoogle Scholar
  53. 53.
    T.B. Humensky, R. Alley, A. Brachmann, M.J. Browne, J. Clendenin, J. deLamare, J. Frisch, T. Galetto et al., Nucl. Instrum. Methods A 521, 261 (2004).ADSCrossRefGoogle Scholar
  54. 54.
    Kiadtisak Saenboonruang, PhD Thesis, University of Virginia (2012) unpublished.Google Scholar
  55. 55.
    Rupesh Silwal, PhD Thesis, University of Virginia (2012) unpublished.Google Scholar
  56. 56.
    Luis R. Mercado, PhD Thesis, University of Massachusetts (2012) unpublished.Google Scholar
  57. 57.
    Chun-Min Jen, PhD Thesis, Syracuse University (2012) unpublished.Google Scholar
  58. 58.
    Zafar Ahmed, PhD Thesis, Syracuse University (2012) unpublished.Google Scholar
  59. 59.
    J.D. Walecka, Nucl. Phys. A 285, 349 (1977).ADSCrossRefGoogle Scholar
  60. 60.
    T.W. Donnelly, R.D. Peccei, Phys. Rep. 50, 1 (1979).ADSCrossRefGoogle Scholar
  61. 61.
    T.W. Donnelly, J.D. Walecka, Annu. Rev. Nucl. Part. Sci. 25, 329 (1975).ADSCrossRefGoogle Scholar
  62. 62.
    T.W. Donnelly, W.C. Haxton, At. Data Nucl. Data Tables 23, 103 (1979).ADSCrossRefGoogle Scholar
  63. 63.
    G. Feinberg, Phys. Rev. D 12, 3575 (1975) (the sign of the asymmetry in this paper is incorrect).ADSCrossRefGoogle Scholar
  64. 64.
    J.S. O’Connell, T.W. Donnelly, J.D. Walecka, Phys. Rev. C 6, 719 (1972).ADSCrossRefGoogle Scholar
  65. 65.
    Technical reports on Q 2 determination at http://hallaweb.jlab.org/parity/prex/qsq.
  66. 66.
    M. Gorchtein, C.J. Horowitz, Phys. Rev. C 77, 044606 (2008).ADSCrossRefGoogle Scholar
  67. 67.
    S. Abrahamyan et al., Phys. Rev. lett. 109, 192501 (2012).ADSCrossRefGoogle Scholar
  68. 68.
    C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007).ADSCrossRefGoogle Scholar
  69. 69.
    A.V. Afanasev, S.J. Brodsky, C.E. Carlson, Y.-C. Chen, M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005).ADSCrossRefGoogle Scholar
  70. 70.
    M. Hauger et al., Nucl. Instrum. Methods A 462, 382 (2001).ADSCrossRefGoogle Scholar
  71. 71.
    M. Friend et al., Nucl. Instrum. Methods A 676, 96 (2012).ADSCrossRefGoogle Scholar
  72. 72.
    Abdurahim Rakham, PhD Thesis, Syracuse University (2012) unpublished.Google Scholar
  73. 73.
    Megan Friend, PhD Thesis, Carnegie Mellon (2012) unpublished.Google Scholar
  74. 74.
    JLab proposal E02-020, The Qweak Experiment, arXiv:1202.1255 [physics.ins-det].
  75. 75.
    Qweak Collaboration (D. Androic et al.), Phys. Rev. Lett. 111, 141803 (2013).ADSCrossRefGoogle Scholar
  76. 76.
    S. Ban, C.J. Horowitz, R. Michaels, J. Phys. G 39, 015104 (2012).ADSCrossRefGoogle Scholar
  77. 77.
    G.A. Lalazissis, J. Konig, P. Ring, Phys. Rev. C 55, 540 (1997).ADSCrossRefGoogle Scholar
  78. 78.
    B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005).ADSCrossRefGoogle Scholar
  79. 79.
    M. Beiner, H. Flocard, N. Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975).ADSCrossRefGoogle Scholar
  80. 80.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaer, Nucl. Phys. A 635, 231 (1998).ADSCrossRefGoogle Scholar
  81. 81.
    D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972).ADSCrossRefGoogle Scholar
  82. 82.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 64, 062802 (2001).ADSCrossRefGoogle Scholar
  83. 83.
    S. Gandolfi, J. Carlson, Sanjay Reddy, Phys. Rev. C 85, 032801 (2012).ADSCrossRefGoogle Scholar
  84. 84.
    J. Erler, arXiv:1211.6292 [nucl-th].
  85. 85.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 765, L5 (2013).ADSCrossRefGoogle Scholar
  86. 86.
    F. Ozel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010).ADSCrossRefGoogle Scholar
  87. 87.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010).ADSCrossRefGoogle Scholar
  88. 88.
    W.G. Lynch, M.B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, A.W. Steiner, arXiv:0901.0412.
  89. 89.
    M.B. Tsang, Yingxun Zhang, P. Danielewicz, M. Famiano, Zhuxia Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009).ADSCrossRefGoogle Scholar
  90. 90.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 66, 055803 (2002).ADSCrossRefGoogle Scholar
  91. 91.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).ADSCrossRefGoogle Scholar
  92. 92.
    M. Bender, P.-H. Heenen, P.-G. Reinhard, Phys. Rev. Mod. 75, 121 (2003).ADSCrossRefGoogle Scholar
  93. 93.
    W. Nazarewicz, P.-G. Reinhard, W. Satula, D. Vretenar, Symmetry energy in nuclear density functional theory, arXiv:1307.5782 [nucl-th], contribution to this Topical Issue.
  94. 94.
    P.-G. Reinhard, arXiv:1308.1659 [nucl-th].
  95. 95.
    M. Kortelainen et al., Phys. Rev. C 77, 064307 (2008).ADSCrossRefGoogle Scholar
  96. 96.
    M. Kortelainen et al., Phys. Rev. C 82, 024313 (2010).ADSCrossRefGoogle Scholar
  97. 97.
    J. Piekarewicz et al., Phys. Rev. C 85, 041302 (2012).ADSCrossRefGoogle Scholar
  98. 98.
    J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A.M. Perhac, M. Stoitsov, Nature 486, 509 (2012).ADSCrossRefGoogle Scholar
  99. 99.
    J. Piekarewicz, contribution to the CREX 2013 workshop, in preparation.Google Scholar
  100. 100.
    J. Piekarewicz, private communication.Google Scholar
  101. 101.
    P.G. Reinhard, W. Nazarewicz, Phys. Rev. C 81, 051303 (2010).ADSCrossRefGoogle Scholar
  102. 102.
    Y. Gao, J. Dobaczewski, M. ortelainen, J. Toivanen, D. Tarpanov, Phys. Rev. C 87, 034324 (2013).ADSCrossRefGoogle Scholar
  103. 103.
    C. Forssén, G. Hagen, M. Hjorth-Jensen, W. Nazarewicz, J. Rotureau, Phys. Scr. T 152, 014022 (2013).ADSCrossRefGoogle Scholar
  104. 104.
    G. Hagen et al., Phys. Rev. Lett. 109, 032502 (2012).ADSCrossRefGoogle Scholar
  105. 105.
    A.T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012).ADSCrossRefGoogle Scholar
  106. 106.
    J.D. Holt et al., J. Phys. G 39, 085111 (2012).ADSCrossRefMathSciNetGoogle Scholar
  107. 107.
    K. Hebeler, R.J. Furnstahl, Phys. Rev. C 87, 031302 (2013).ADSCrossRefGoogle Scholar
  108. 108.
    I. Tews, T. Krueger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013).ADSCrossRefGoogle Scholar
  109. 109.
    S. Bogner, Comput. Phys. Commun. (2013).Google Scholar
  110. 110.
    A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich, S.M. Wild, Phys. Rev. Lett. 110, 192502 (2013).ADSCrossRefGoogle Scholar
  111. 111.
    S.N. More, A. Ekstrom, R.J. Furnstahl, G. Hagen, T. Papenbrock et al., Phys. Rev. C 87, 044326 (2013).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.University of MassachusettsAmherstUSA
  3. 3.Thomas Jefferson National Accelerator FacilityNewport NewsUSA

Personalised recommendations