Advertisement

The FAZIA project in Europe: R&D phase

  • The FAZIA Collaboration
  • R. BougaultEmail author
  • G. Poggi
  • S. Barlini
  • B. Borderie
  • G. Casini
  • A. Chbihi
  • N. Le Neindre
  • M. Pârlog
  • G. Pasquali
  • S. Piantelli
  • Z. Sosin
  • G. Ademard
  • R. Alba
  • A. Anastasio
  • S. Barbey
  • L. Bardelli
  • M. Bini
  • A. Boiano
  • M. Boisjoli
  • E. Bonnet
  • R. Borcea
  • B. Bougard
  • G. Brulin
  • M. Bruno
  • S. Carboni
  • C. Cassese
  • F. Cassese
  • M. Cinausero
  • L. Ciolacu
  • I. Cruceru
  • M. Cruceru
  • B. D’Aquino
  • B. De Fazio
  • M. Degerlier
  • P. Desrues
  • P. Di Meo
  • J. A. Dueñas
  • P. Edelbruck
  • S. Energico
  • M. Falorsi
  • J. D. Frankland
  • E. Galichet
  • K. Gasior
  • F. Gramegna
  • R. Giordano
  • D. Gruyer
  • A. Grzeszczuk
  • M. Guerzoni
  • H. Hamrita
  • C. Huss
  • M. Kajetanowicz
  • K. Korcyl
  • A. Kordyasz
  • T. Kozik
  • P. Kulig
  • L. Lavergne
  • E. Legouée
  • O. Lopez
  • J. Łukasik
  • C. Maiolino
  • T. Marchi
  • P. Marini
  • I. Martel
  • V. Masone
  • A. Meoli
  • Y. Merrer
  • L. Morelli
  • F. Negoita
  • A. Olmi
  • A. Ordine
  • G. Paduano
  • C. Pain
  • M. Pałka
  • G. Passeggio
  • G. Pastore
  • P. Pawłowski
  • M. Petcu
  • H. Petrascu
  • E. Piasecki
  • G. Pontoriere
  • E. Rauly
  • M. F. Rivet
  • R. Rocco
  • E. Rosato
  • L. Roscilli
  • E. Scarlini
  • F. Salomon
  • D. Santonocito
  • V. Seredov
  • S. Serra
  • D. Sierpowski
  • G. Spadaccini
  • C. Spitaels
  • A. A. Stefanini
  • G. Tobia
  • G. Tortone
  • T. Twaróg
  • S. Valdré
  • A. Vanzanella
  • E. Vanzanella
  • E. Vient
  • M. Vigilante
  • G. Vitiello
  • E. Wanlin
  • A. Wieloch
  • W. Zipper
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

The goal of the FAZIA Collaboration is the design of a new-generation 4π detector array for heavy-ion collisions with radioactive beams. This article summarizes the main results of the R&D phase, devoted to the search for significant improvements of the techniques for charge and mass identification of reaction products. This was obtained by means of a systematic study of the basic detection module, consisting of two transmission-mounted silicon detectors followed by a CsI(Tl) scintillator. Significant improvements in ΔE-E and pulse-shape techniques were obtained by controlling the doping homogeneity and the cutting angles of silicon and by putting severe constraints on thickness uniformity. Purposely designed digital electronics contributed to identification quality. The issue of possible degradation related to radiation damage of silicon was also addressed. The experimental activity was accompanied by studies on the physics governing signal evolution in silicon. The good identification quality obtained with the prototypes during the R&D phase, allowed us to investigate also some aspects of isospin physics, namely isospin transport and odd-even staggering. Now, after the conclusion of the R&D period, the FAZIA Collaboration has entered the demonstrator phase, with the aim of verifying the applicability of the devised solutions for the realization of a larger-scale experimental set-up.

Keywords

Signal Shape Silicon Detector Charge Signal Isotopic Resolution Depletion Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Paush et al., IEEE Trans. Nucl. Sci. 44, 1040 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    M. Mutterer et al., IEEE Trans. Nucl. Sci. 47, 756 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    C.A.J. Ammerlaan et al., Nucl. Instrum. Methods A 22, 189 (1963).CrossRefGoogle Scholar
  4. 4.
    J.B.A. England et al., Nucl. Instrum. Methods A 280, 291 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    G. Paush et al., Nucl. Instrum. Methods A 337, 337 (1994).Google Scholar
  6. 6.
    G. Paush et al., IEEE Trans. Nucl. Sci. 43, 1097 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    A. Pagano et al., Nucl. Phys. A 734, 504 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    M. Bruno et al., Eur. Phys. J. A 49, 128 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. Pârlog, in Proceedings of the IWM 2003, International workshop on multifragmentation and related topics (GANIL, Caen, 2004).Google Scholar
  11. 11.
    H. Hamrita et al., Nucl. Instrum. Methods A 531, 607 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    L. Bardelli, in Proceedings of the International Workshop on Multifragmentation IWM2005, edited by R. Bougault, A. Pagano, S. Pirrone, M.-F. Rivet, F. Rizzo (SIF, Bologna, 2005) ISBN 88-7438-029-1.Google Scholar
  13. 13.
    M. Pârlog et al., Nucl. Instrum. Methods A 613, 290 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Sosin et al., Nucl. Instrum. Methods A 693, 170 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    W. von Ammon et al., Nucl. Instrum. Methods B 63, 95 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    G. Pasquali et al., Nucl. Instrum. Methods A 570, 126 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    L. Bardelli et al., Nucl. Instrum. Methods A 605, 353 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    L. Bardelli et al., Nucl. Instrum. Methods A 602, 501 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    S. Barlini, et al., Nucl. Instrum. Methods A 600, 644 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    N. Le Neindre et al., Nucl. Instrum. Methods A 701, 145 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    F.Z. Henari et al., Nucl. Instrum. Methods A 288, 439 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    H.A. Rijken et al., IEEE Trans. Nucl. Sci. 40, 349 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    L. Bardelli et al., Nucl. Instrum. Methods A 521, 480 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    W. Seibt Nucl. Instrum. Methods A1133171973).CrossRefGoogle Scholar
  27. 27.
    G. Paush et al., Nucl. Instrum. Methods A 365, 176 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    W.M. Gibson Phys. Rev. Lett.15 3601965.CrossRefGoogle Scholar
  29. 29.
    B.R. Appleton et al., Phys. Rev. 161, 330 (1967).ADSCrossRefGoogle Scholar
  30. 30.
    J.J. Grob et al., Phys. Rev. B 11, 3273 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    A.A. Alexandrov et al., Nucl. Instrum. Methods A 312, 542 (1992).ADSCrossRefGoogle Scholar
  32. 32.
    G. Poggi et al., Nucl. Instrum. Methods B 119, 375 (1996).ADSCrossRefGoogle Scholar
  33. 33.
    L. Bardelli et al., Nucl. Instrum. Methods A 560, 517 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Winyard et al., Nucl. Instrum. Methods 95, 141 (1971).ADSCrossRefGoogle Scholar
  35. 35.
    R.J. Charity et al., Nucl. Phys. A 476, 516 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    S. Barlini et al., Nucl. Instrum. Methods A 707, 89 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    M. Alderighi et al., IEEE Trans. Nucl. Sci. 53, 279 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    A. Alberigi Quaranta et al., IEEE Trans. Nucl. Sci. 15, 373 (1968).ADSCrossRefGoogle Scholar
  39. 39.
    I. Kano, Nucl. Instrum. Methods A 353, 93 (1994).ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    H. Hamrita et al., Nucl. Instrum. Methods A 642, 59 (2011).ADSCrossRefGoogle Scholar
  41. 41.
    G. Pasquali submitted to Eur. Phys. J. A, arXiv:1402.4943 [physics.ins-det].
  42. 42.
    G. Pastore, Master Thesis, University of Florence (2013).Google Scholar
  43. 43.
    G. Pasquali et al., Nucl. Instrum. Methods A 301, 101 (1991).ADSCrossRefGoogle Scholar
  44. 44.
    G. Prete et al., Nucl. Instrum. Methods A 315, 109 (1992).ADSCrossRefGoogle Scholar
  45. 45.
    G. Pasquali et al., Eur. Phys. J. A 48, 158 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    F. Hubert et al., At. Data Nucl. Data Tables 46, 1 (1990).ADSCrossRefGoogle Scholar
  47. 47.
    Y. Blumenfeld et al., Nucl. Instrum. Methods A 421, 471 (1999).ADSCrossRefGoogle Scholar
  48. 48.
    B. Davin et al., Nucl. Instrum. Methods A 473, 302 (2001).ADSCrossRefGoogle Scholar
  49. 49.
    E. Pollaco et al., Eur. Phys. J. A 25, 287 (2005).CrossRefGoogle Scholar
  50. 50.
    M.S. Wallace et al., Nucl. Instrum. Methods A 583, 302 (2007).ADSCrossRefGoogle Scholar
  51. 51.
    M. Labiche et al., Nucl. Instrum. Methods A 614, 439 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    G. Verde et al., J. Phys. Conf. Ser. 420, 012158 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    D. Torresi et al., Nucl. Instrum. Methods A 713, 11 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    B. Davin et al., Nucl. Instrum. Methods B 317, 661 (2013).CrossRefGoogle Scholar
  55. 55.
    G. Verde et al., Eur. Phys. J. A 30, 81 (2006).ADSCrossRefGoogle Scholar
  56. 56.
    R. Charity et al., Phys. Rev. C 52, 3126 (1995).ADSCrossRefGoogle Scholar
  57. 57.
    W. Tan et al., Phys. Rev. C 69, 061304 (2004).ADSCrossRefGoogle Scholar
  58. 58.
    F. Grenier et al., Nucl. Phys. A 811, 126 (2008).CrossRefGoogle Scholar
  59. 59.
    S. Valdrè, Degree Thesis, University of Florence (2009).Google Scholar
  60. 60.
    S. Barlini et al., Phys. Rev. C 87, 054607 (2013).ADSCrossRefGoogle Scholar
  61. 61.
    S. Piantelli et al., Phys. Rev. C 88, 064607 (2013).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • The FAZIA Collaboration
  • R. Bougault
    • 1
    Email author
  • G. Poggi
    • 2
    • 3
  • S. Barlini
    • 2
    • 3
  • B. Borderie
    • 4
  • G. Casini
    • 3
  • A. Chbihi
    • 5
  • N. Le Neindre
    • 1
  • M. Pârlog
    • 1
    • 6
  • G. Pasquali
    • 2
    • 3
  • S. Piantelli
    • 3
  • Z. Sosin
    • 7
  • G. Ademard
    • 4
  • R. Alba
    • 8
  • A. Anastasio
    • 12
  • S. Barbey
    • 4
  • L. Bardelli
    • 2
    • 3
  • M. Bini
    • 2
    • 3
  • A. Boiano
    • 12
  • M. Boisjoli
    • 5
  • E. Bonnet
    • 5
  • R. Borcea
    • 6
  • B. Bougard
    • 1
  • G. Brulin
    • 4
  • M. Bruno
    • 16
  • S. Carboni
    • 2
    • 3
  • C. Cassese
    • 12
  • F. Cassese
    • 12
  • M. Cinausero
    • 10
  • L. Ciolacu
    • 6
  • I. Cruceru
    • 6
  • M. Cruceru
    • 6
  • B. D’Aquino
    • 12
  • B. De Fazio
    • 13
  • M. Degerlier
    • 11
  • P. Desrues
    • 1
  • P. Di Meo
    • 12
  • J. A. Dueñas
    • 9
  • P. Edelbruck
    • 4
  • S. Energico
    • 14
  • M. Falorsi
    • 2
  • J. D. Frankland
    • 5
  • E. Galichet
    • 4
    • 21
  • K. Gasior
    • 18
  • F. Gramegna
    • 10
  • R. Giordano
    • 12
    • 15
  • D. Gruyer
    • 5
  • A. Grzeszczuk
    • 18
  • M. Guerzoni
    • 17
  • H. Hamrita
    • 4
  • C. Huss
    • 4
  • M. Kajetanowicz
    • 7
  • K. Korcyl
    • 20
  • A. Kordyasz
    • 19
  • T. Kozik
    • 7
  • P. Kulig
    • 7
  • L. Lavergne
    • 4
  • E. Legouée
    • 1
  • O. Lopez
    • 1
  • J. Łukasik
    • 20
  • C. Maiolino
    • 8
  • T. Marchi
    • 10
  • P. Marini
    • 5
  • I. Martel
    • 9
  • V. Masone
    • 12
  • A. Meoli
    • 12
  • Y. Merrer
    • 1
  • L. Morelli
    • 16
  • F. Negoita
    • 6
  • A. Olmi
    • 3
  • A. Ordine
    • 12
  • G. Paduano
    • 12
  • C. Pain
    • 1
  • M. Pałka
    • 7
  • G. Passeggio
    • 12
  • G. Pastore
    • 2
    • 3
  • P. Pawłowski
    • 20
  • M. Petcu
    • 6
  • H. Petrascu
    • 6
  • E. Piasecki
    • 19
  • G. Pontoriere
    • 12
  • E. Rauly
    • 4
  • M. F. Rivet
    • 4
  • R. Rocco
    • 12
  • E. Rosato
    • 12
    • 13
  • L. Roscilli
    • 12
  • E. Scarlini
    • 2
  • F. Salomon
    • 4
  • D. Santonocito
    • 8
  • V. Seredov
    • 4
  • S. Serra
    • 17
  • D. Sierpowski
    • 7
  • G. Spadaccini
    • 12
    • 13
  • C. Spitaels
    • 5
  • A. A. Stefanini
    • 2
    • 3
  • G. Tobia
    • 3
  • G. Tortone
    • 12
  • T. Twaróg
    • 7
  • S. Valdré
    • 2
    • 3
  • A. Vanzanella
    • 12
  • E. Vanzanella
    • 12
  • E. Vient
    • 1
  • M. Vigilante
    • 12
    • 13
  • G. Vitiello
    • 12
  • E. Wanlin
    • 4
  • A. Wieloch
    • 7
  • W. Zipper
    • 18
  1. 1.LPC Caen, ENSICAENUniversité de Caen, CNRS-IN2P3Caen cedexFrance
  2. 2.Dipartimento di FisicaUniversità di FirenzeSesto FiorentinoItaly
  3. 3.INFNSezione di FirenzeSesto FiorentinoItaly
  4. 4.Institut de Physique Nucléaire, CNRS/IN2P3Université Paris-Sud 11Orsay cedexFrance
  5. 5.GANILCEA/DSM-CNRS/IN2P3Caen cedexFrance
  6. 6.Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH)Bucharest MăgureleRomania
  7. 7.Jagiellonian UniversityInstitute of PhysicsKrakowPoland
  8. 8.INFNLaboratori Nazionali del SudCataniaItaly
  9. 9.Departamento de Fisica AplicadaFCCEE Universidad de HuelvaHuelvaSpain
  10. 10.INFNLNL LegnaroLegnaroItaly
  11. 11.Science and Art Faculty, Physics DepartmentNevsehir Haci Bektas UniversityNevsehirTurkey
  12. 12.INFN - Sezione di NapoliComplesso Universitario di Monte S. AngeloNapoliItaly
  13. 13.Dipartimento di Fisica, Università di Napoli “Federico II”Complesso Universitario di Monte S. AngeloNapoliItaly
  14. 14.Istituto SPIN - CNRComplesso Universitario di Monte S. AngeloNapoliItaly
  15. 15.Dipartimento di Informatica e SistemisticaUniversità di Napoli “Federico II”NapoliItaly
  16. 16.Dipartimento di Fisica ed Astronomia, Università di BolognaINFN, Sezione di BolognaBolognaItaly
  17. 17.INFNSezione di BolognaBolognaItaly
  18. 18.August Chełlkowski Institute of PhysicsUniversity of SilesiaKatowicePoland
  19. 19.Heavy Ion LaboratoryUniversity of WarsawWarsawPoland
  20. 20.Institute of Nuclear Physics PANKrakowPoland
  21. 21.Conservatoire National des Arts et MétiersParisFrance

Personalised recommendations