Advertisement

Probing the high-density behavior of symmetry energy with gravitational waves

  • F. J. FattoyevEmail author
  • W. G. Newton
  • Bao-An Li
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

Gravitational wave (GW) astronomy opens up an entirely new window on the Universe to probe the equations of state (EOS) of neutron-rich matter. With the advent of next-generation GW detectors, measuring the gravitational radiation from coalescing binary neutron star systems, mountains on rotating neutron stars, and stellar oscillation modes may become possible in the near future. Using a set of model EOSs satisfying the latest constraints from terrestrial nuclear experiments, state-of-the-art nuclear many-body calculations of the pure neutron matter EOS, and astrophysical observations consistently, we study various GW signatures of the high-density behavior of the nuclear symmetry energy, which is considered among the most uncertain properties of dense neutron-rich nucleonic matter. In particular, we find the tidal polarizability of neutron stars, potentially measurable in binary systems just prior to merger, is more sensitive to the high-density component of the nuclear symmetry energy than the symmetry energy at nuclear saturation density. We also find that the upper limit on the GW strain amplitude from elliptically deformed stars is very sensitive to the density dependence of the symmetry energy. This suggests that future developments in modeling of the neutron star crust, and direct gravitational wave signals from accreting binaries will provide a wealth of information on the EOS of neutron-rich matter. We also review the sensitivity of the r -mode instability window to the density dependence of the symmetry energy. Whereas models with larger values of the density slope of the symmetry energy at saturation seem to be disfavored by the current observational data, within a simple r -mode model, we point out that a subsequent softer behavior of the symmetry energy at high densities (hinted at by recent observational interpretations) could rule them in.

Keywords

Neutron Star Gravitational Wave Symmetry Energy Symmetric Nuclear Matter Tidal Polarizability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    The 2007 US NSAC Long Range Plan, http://science.energy.gov/np/nsac/.
  2. 2.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010).ADSGoogle Scholar
  3. 3.
    J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch et al., Science 340, 6131 (2013).ADSGoogle Scholar
  4. 4.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 208, 1592 (2002).ADSGoogle Scholar
  5. 5.
    J.M. Lattimer, M. Prakash, Phys. Rep. 333, 121 (2000).ADSGoogle Scholar
  6. 6.
    J.M. Lattimer, M. Prakash, Science 304, 536 (2004).ADSGoogle Scholar
  7. 7.
    J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013).ADSGoogle Scholar
  8. 8.
    C. Xu, B.-A. Li, L.-W. Chen, Phys. Rev. C 82, 054607 (2010).ADSGoogle Scholar
  9. 9.
    W.G. Newton, M. Gearheart, B.-A. Li, Astrophys. J. Suppl. 204, 9 (2013).ADSGoogle Scholar
  10. 10.
    A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012).ADSGoogle Scholar
  11. 11.
    M. Dutra, O. Lourenço, J.S. Sà Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012).ADSGoogle Scholar
  12. 12.
    M. Tsang et al., Phys. Rev. C 86, 015803 (2012).ADSGoogle Scholar
  13. 13.
    F.J. Fattoyev, W.G. Newton, J. Xu, B.-A. Li, Phys. Rev. C 86, 025804 (2012).ADSGoogle Scholar
  14. 14.
    F.J. Fattoyev, J. Piekarewicz, Phys. Rev. Lett. 111, 162501 (2013).ADSGoogle Scholar
  15. 15.
    M. Kutschera, Phys. Lett. B 340, 1 (1994).ADSGoogle Scholar
  16. 16.
    S. Kubis, M. Kutschera, Acta Phys. Pol. B 30, 2747 (1999).ADSGoogle Scholar
  17. 17.
    S. Kubis, M. Kutschera, Nucl. Phys. A 720, 189 (2003).ADSGoogle Scholar
  18. 18.
    D.-H. Wen, B.-A. Li, L.-W. Chen, Phys. Rev. Lett. 103, 211102 (2009).ADSGoogle Scholar
  19. 19.
    H.K. Lee, B.-Y. Park, M. Rho, Phys. Rev. C 83, 025206 (2011).ADSGoogle Scholar
  20. 20.
    B.-A. Li, L.-W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).ADSGoogle Scholar
  21. 21.
    B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).ADSGoogle Scholar
  22. 22.
    A. Szmaglinski, W. Wojcik, M. Kutschera, Acta Phys. Pol. B 37, 277 (2006).ADSGoogle Scholar
  23. 23.
    A.E.L. Dieperink, Y. Dewulf, D. Van Neck, M. Waroquier, V. Rodin, Phys. Rev. C 68, 064307 (2003).ADSGoogle Scholar
  24. 24.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).ADSGoogle Scholar
  25. 25.
    C.-H. Lee, T.T.S. Kuo, G.Q.Li, G.E. Brown, Phys. Rev. C 57, 3488 (1998).ADSGoogle Scholar
  26. 26.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).ADSGoogle Scholar
  27. 27.
    L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. C 76, 054316 (2007).ADSGoogle Scholar
  28. 28.
    Z.H. Li, U. Lombardo, H.-J. Schulze, W. Zuo, L.W. Chen, H.R. Ma, Phys. Rev. C 74, 047304 (2006).ADSGoogle Scholar
  29. 29.
    V.R. Pandharipande, V.K. Garde, Phys. Lett. B 39, 608 (1972).ADSGoogle Scholar
  30. 30.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981).ADSGoogle Scholar
  31. 31.
    R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988).ADSGoogle Scholar
  32. 32.
    N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A 697, 255 (2002).ADSzbMATHGoogle Scholar
  33. 33.
    P.G. Krastev, F. Sammarruca, Phys. Rev. C 74, 025808 (2006).ADSGoogle Scholar
  34. 34.
    E. Chabanat, J. Meyer, P. Bonche, R. Schaeffer, P. Haensel, Nucl. Phys. A 627, 710 (1997).ADSGoogle Scholar
  35. 35.
    J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003).ADSGoogle Scholar
  36. 36.
    L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. C 72, 064309 (2005).ADSGoogle Scholar
  37. 37.
    J. Decharge, D. Gogny, Phys. Rev. C 21, 1568 (1980).ADSGoogle Scholar
  38. 38.
    C.B. Das, S.D. Gupta, C. Gale, B.-A. Li, Phys. Rev. C 67, 034611 (2003).ADSGoogle Scholar
  39. 39.
    D.T. Khoa, W. von Oertzen, A.A. Ogloblin, Nucl. Phys. A 602, 98 (1996).ADSGoogle Scholar
  40. 40.
    D.N. Basu, P.R. Chowdhury, C. Samanta, Nucl. Phys. A 811, 140 (2008).ADSGoogle Scholar
  41. 41.
    W.D. Myers, W.J. Swiatecki, Acta Phys. Pol. B 26, 111 (1995).Google Scholar
  42. 42.
    S. Banik, D. Bandyopadhyay, J. Phys. G 26, 1495 (2000).ADSGoogle Scholar
  43. 43.
    P.R. Chowdhury, D.N. Basu, C. Samanta, Phys. Rev. C 80, 011305 (2009).ADSGoogle Scholar
  44. 44.
    C. Xu, B.-A. Li, Phys. Rev. C 81, 064612 (2010).ADSGoogle Scholar
  45. 45.
    C. Xu, A. Li, B.-A. Li, J. Phys. Conf. Ser. 420, 012090 (2013).ADSGoogle Scholar
  46. 46.
    Z. Xiao, B.-A. Li, L.-W. Chen, G.-C. Yong, M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).ADSGoogle Scholar
  47. 47.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011).ADSGoogle Scholar
  48. 48.
    W. Trautmann, H.H. Wolter, Int. J. Mod. Phys. E 21, 1230003 (2012).ADSGoogle Scholar
  49. 49.
    L.F. Roberts, G. Shen, V. Cirigliano, J.A. Pons, S. Reddy, S.E. Woosley, Phys. Rev. Lett. 108, 061103 (2012).ADSGoogle Scholar
  50. 50.
    F.J. Fattoyev, J. Carvajal, W.G. Newton, B.-A. Li, Phys. Rev. C 87, 015806 (2013).ADSGoogle Scholar
  51. 51.
    R.A. Hulse, J.H. Taylor, Astrophys. J. 195, L51 (1975).ADSGoogle Scholar
  52. 52.
    M. Burgay et al., Nature 426, 531 (2003).ADSGoogle Scholar
  53. 53.
    A.G. Lyne et al., Science 303, 1153 (2004).ADSGoogle Scholar
  54. 54.
    A. Schwenk, C.J. Pethick, Phys. Rev. Lett. 95, 160401 (2005).ADSGoogle Scholar
  55. 55.
    E. van Dalen, H. Muther, Phys. Rev. C 80, 037303 (2009).ADSGoogle Scholar
  56. 56.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010).ADSGoogle Scholar
  57. 57.
    S. Gandolfi, A.Y. Illarionov, S. Fantoni, F. Pederiva, K.E. Schmidt, Phys. Rev. Lett. 101, 132501 (2008).ADSGoogle Scholar
  58. 58.
    A. Gezerlis, J. Carlson, Phys. Rev. C 81, 025803 (2010).ADSGoogle Scholar
  59. 59.
    E.N.I. Vidaña, A. Polls, A. Ramos, Phys. Rev. C 65, 035804 (2002).ADSGoogle Scholar
  60. 60.
    D.H. Youngblood, H.L. Clark, Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999).ADSGoogle Scholar
  61. 61.
    Y.-W. Lui, D. Youngblood, S. Shlomo, X. Chen, Y. Tokimoto et al., Phys. Rev. C 83, 044327 (2011).ADSGoogle Scholar
  62. 62.
    R. Furnstahl, J.J. Rusnak, B.D. Serot, Nucl. Phys. A 632, 607 (1998).ADSGoogle Scholar
  63. 63.
    F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010).ADSGoogle Scholar
  64. 64.
    H. Mueller, B.D. Serot, Nucl. Phys. A 606, 508 (1996).ADSGoogle Scholar
  65. 65.
    B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005).ADSGoogle Scholar
  66. 66.
    S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Astrophys. J. 772, 7 (2013).ADSGoogle Scholar
  67. 67.
    J.M. Lattimer, A.W. Steiner, arXiv:1305.3242 (2013).
  68. 68.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010).ADSGoogle Scholar
  69. 69.
    F. Özel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010).ADSGoogle Scholar
  70. 70.
    V. Suleimanov, J. Poutanen, M. Revnivtsev, K. Werner, Astrophys. J. 742, 122 (2011).ADSGoogle Scholar
  71. 71.
    É. É. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008).ADSGoogle Scholar
  72. 72.
    T. Hinderer, Astrophys. J. 677, 1216 (2008).ADSGoogle Scholar
  73. 73.
    T. Binnington, E. Poisson, Phys. Rev. D 80, 084018 (2009).ADSGoogle Scholar
  74. 74.
    T. Damour, A. Nagar, Phys. Rev. D 80, 084035 (2009).ADSMathSciNetGoogle Scholar
  75. 75.
    T. Damour, A. Nagar, Phys. Rev. D 81, 084016 (2010).ADSGoogle Scholar
  76. 76.
    T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010).ADSGoogle Scholar
  77. 77.
    S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010).ADSGoogle Scholar
  78. 78.
    L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, L. Rezzolla, Phys. Rev. Lett. 105, 261101 (2010).ADSGoogle Scholar
  79. 79.
    L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, L. Rezzolla, Phys. Rev. D 84, 024017 (2011).ADSGoogle Scholar
  80. 80.
    B.D. Lackey, K. Kyutoku, M. Shibata, P.R. Brady, J.L. Friedman, Phys. Rev. D 85, 044061 (2012).ADSGoogle Scholar
  81. 81.
    F. Pannarale, L. Rezzolla, F. Ohme, J.S. Read, Phys. Rev. D 84, 104017 (2011).ADSGoogle Scholar
  82. 82.
    T. Damour, A. Nagar, L. Villain, Phys. Rev. D 85, 123007 (2012).ADSGoogle Scholar
  83. 83.
    F. Özel, D. Psaltis, R. Narayan, A.S. Villarreal, Astrophys. J. 757, 55 (2012).ADSGoogle Scholar
  84. 84.
    The Advanced LIGO gravitational wave detector, https://www.advancedligo.mit.edu/ .
  85. 85.
    The Einstein Telescope project, http://www.et-gw.eu/.
  86. 86.
    LIGO Scientific Collaboration, Virgo Collaboration (J. Abadie et al.), Class. Quantum Grav. 27, 173001 (2010).ADSGoogle Scholar
  87. 87.
    P.G. Krastev, B.-A. Li, A. Worley, Phys. Lett. B 668, 1 (2008).ADSGoogle Scholar
  88. 88.
    C.J. Horowitz, K. Kadau, Phys. Rev. Lett. 102, 191102 (2009).ADSGoogle Scholar
  89. 89.
    M. Zimmermann, E. Szedenits, Phys. Rev. D 20, 351 (1979).ADSGoogle Scholar
  90. 90.
    M. Zimmermann, Phys. Rev. D 21, 891 (1980).ADSGoogle Scholar
  91. 91.
    S. Bonazzola, E. Gourgoulhon, Astron. Astrophys. 312, 675 (1996).ADSGoogle Scholar
  92. 92.
    B. Haskell, N. Andersson, D.I. Jones, L. Samuelsson, Phys. Rev. Lett. 99, 231101 (2007).ADSGoogle Scholar
  93. 93.
    B.J. Owen, Phys. Rev. Lett. 95, 211101 (2005).ADSGoogle Scholar
  94. 94.
    G. Ushomirsky, C. Cutler, L. Bildsten, Mon. Not. R. Astron. Soc. 319, 902 (2000).ADSGoogle Scholar
  95. 95.
    B.-A. Li, L.-W. Chen, Phys. Rev. C 72, 064611 (2005).ADSGoogle Scholar
  96. 96.
    B.-A. Li, A.W. Steiner, Phys. Lett. B 642, 436 (2006).ADSGoogle Scholar
  97. 97.
    M. Gearheart, W.G. Newton, J. Hooker, B.-A. Li, Mon. Not. R. Astron. Soc. 418, 2343 (2011).ADSGoogle Scholar
  98. 98.
    J.M. Lattimer, B.F. Schutz, Astrophys. J. 629, 979 (2005).ADSGoogle Scholar
  99. 99.
    LIGO Scientific Collaboration, Virgo Collaboration (B.P. Abbott et al.), Astrophys. J. 713, 671 (2010).ADSGoogle Scholar
  100. 100.
    N. Andersson et al., Gen. Relativ. Gravit. 43, 409 (2011).ADSzbMATHGoogle Scholar
  101. 101.
  102. 102.
    N. Andersson, K.D. Kokkotas, Phys. Rev. Lett. 677, 4134 (1996).ADSGoogle Scholar
  103. 103.
    A.W. Steiner, A.L. Watts, Phys. Rev. Lett. 103, 181101 (2009).ADSGoogle Scholar
  104. 104.
    H. Sotani, K. Nakazato, K. Iida, K. Oyamatsu, Mon. Not. R. Astron. Soc. 428, L21 (2013).ADSGoogle Scholar
  105. 105.
    H. Sotani, K. Nakazato, K. Iida, K. Oyamatsu, Mon. Not. R. Astron. Soc. 434, 2060 (2013).ADSGoogle Scholar
  106. 106.
    D.-H. Wen, B.-A. Li, P.G. Krastev, Phys. Rev. C 80, 025801 (2009).ADSGoogle Scholar
  107. 107.
    W. Lin, B.-A. Li, J. Xu, C.M. Ko, D.-H. Wen, Phys. Rev. C 83, 045802 (2011).ADSGoogle Scholar
  108. 108.
    N. Andersson, Astrophys. J. 502, 708 (1998).ADSGoogle Scholar
  109. 109.
    J.L. Friedman, S.M. Morsink, Astrophys. J. 502, 714 (1998).ADSGoogle Scholar
  110. 110.
    L. Lindblom, B.J. Owen, S.M. Morsink, Phys. Rev. Lett. 80, 4843 (1998).ADSGoogle Scholar
  111. 111.
    D.-H. Wen, W.G. Newton, B.-A. Li, Phys. Rev. C 85, 025801 (2012).ADSGoogle Scholar
  112. 112.
    L. Bildsten, G. Ushomirsky, Astrophys. J. 529, L33 (2000).ADSGoogle Scholar
  113. 113.
    N. Andersson, D.I. Jones, K.D. Kokkotas, N. Stergioulas, Astrophys. J. 534, L75 (2000).ADSGoogle Scholar
  114. 114.
    L. Lindblom, B.J. Owen, G. Ushomirsky, Phys. Rev. D 62, 084030 (2000).ADSGoogle Scholar
  115. 115.
    I. Vidaña, Phys. Rev. C 85, 045808 (2012).ADSGoogle Scholar
  116. 116.
    W.C.G. Ho, N. Andersson, B. Haskell, Phys. Rev. Lett. 107, 101101 (2011).ADSGoogle Scholar
  117. 117.
    Y. Levin, Astrophys. J. 517, 328 (1999).ADSGoogle Scholar
  118. 118.
    R. Bondarescu, S.A. Teukolsky, I. Wasserman, Phys. Rev. D 76, 064019 (2007).ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics and AstronomyTexas A&M University-CommerceCommerceUSA

Personalised recommendations