Advertisement

Symmetry energy, unstable nuclei and neutron star crusts

  • Kei IidaEmail author
  • Kazuhiro Oyamatsu
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters.

Keywords

Neutron Star Nuclear Matter Symmetry Energy Unstable Nucleus Total Reaction Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Heiselberg, V.R. Pandharipande, Annu. Rev. Nucl. Part. Sci. 50, 481 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    T. Krüger, I. Tews, K. Hebeler, A. Schwenk, Phys. Rev. C 88, 025802 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 31, 337 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    J. Carlson, J. Morales, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    K. Oyamatsu, K. Iida, Prog. Theor. Phys. 109, 631 (2003).ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    J.M. Lattimer, M. Prakash, Science 304, 536 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    K. Oyamatsu, Nucl. Phys. A 561, 431 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    I.E. Lagaris, V.R. Pandharipande, Nucl. Phys. A 369, 470 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    K. Oyamatsu, K. Iida, Phys. Rev. C 75, 015801 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A.R. Bodmer, Q.N. Usmani, Phys. Rev. C 67, 034305 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    L.R.B. Elton, A. Swift, Nucl. Phys. A 94, 52 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    A. Ozawa et al., Phys. Lett. B 334, 18 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    L. Chulkov et al., Nucl. Phys. A 603, 219 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    A. Ozawa et al., Nucl. Phys. A 709, 60 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    M. Farine, J.M. Pearson, B. Rouben, Nucl. Phys. A 304, 317 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. Kortelainen, T. Lesinski, J. Moré, W. Nararewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    J.P. Blaizot, Phys. Rep. 64, 171 (1980).ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    J.B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada, J. Wang, Phys. Rev. Lett. 89, 212701 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    E. Khan, J. Margueron, Phys. Rev. C 88, 034319 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    A. Kohama, K. Iida, K. Oyamatsu, Phys. Rev. C 69, 064316 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Batty, E. Friedman, H.J. Gils, H. Rebel, Adv. Nucl. Phys. 19, 1 (1989).Google Scholar
  27. 27.
    X. Roca-Maza, M. Centelles, X. Viñas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    M. Yamada, Prog. Theor. Phys. 32, 512 (1964).ADSCrossRefGoogle Scholar
  29. 29.
    K. Iida, K. Oyamatsu, Phys. Rev. C 69, 037301 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    L. Ray, G.W. Hoffmann, W.R. Coker, Phys. Rep. 212, 223 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Glauber, in Lectures in Theoretical Physics, edited by W.E. Brittin, L.C. Dunham, Vol. 1 (Interscience, New York, 1959) p. 315.Google Scholar
  32. 32.
    K. Iida, K. Oyamatsu, B. Abu-Ibrahim, Phys. Lett. B 576, 273 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    I. Ahmad, Nucl. Phys. A 247, 418 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    L. Ray, Phys. Rev. C 20, 1857 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    L. Ray, W.R. Coker, G.W. Hoffmann, Phys. Rev. C 18, 2641 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    K. Iida, K. Oyamatsu, B. Abu-Ibrahim, A. Kohama, Prog. Theor. Phys. 126, 1091 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    A. Ingemarsson, M. Lantz, Phys. Rev. C 72, 064615 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    K. Iida, A. Kohama, K. Oyamatsu, J. Phys. Soc. Jpn. 76, 044201 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    A. Kohama, K. Iida, K. Oyamatsu, Phys. Rev. C 78, 061601(R) (2008).ADSCrossRefGoogle Scholar
  40. 40.
    I.S. Novikov, Y. Shabelski, arXiv:1302.3930.
  41. 41.
    K. Oyamatsu, K. Iida, Phys. Rev. C 81, 054302 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    K. Oyamatsu, K. Iida, H. Koura, Phys. Rev. C 82, 027301 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    H. Koura, T. Tachibana, M. Uno, M. Yamada, Prog. Theor. Phys. 113, 305 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    Chart of the Nuclides 2004, compiled by T. Horiguchi, JNDC and Nuclear Data Center, JAERI (2005).Google Scholar
  45. 45.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    M. Notani et al., Phys. Rev. C 76, 044605 (2007).ADSCrossRefGoogle Scholar
  47. 47.
    T. Baumann et al., Nature (London) 449, 1022 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    C.J. Pethick, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995).ADSCrossRefGoogle Scholar
  49. 49.
    N. Chamel, P. Haensel, Living Rev. Relativ. 11, 10 (2008).ADSCrossRefGoogle Scholar
  50. 50.
    K. Oyamatsu, M. Hashimoto, M. Yamada, Prog. Theor. Phys. 72, 373 (1984).ADSCrossRefGoogle Scholar
  51. 51.
    T. Maruyama, G. Watanabe, S. Chiba, Prog. Theor. Exp. Phys. 1, 01A201 (2012).Google Scholar
  52. 52.
    W.G. Newton, J.R. Stone, Phys. Rev. C 79, 055801 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    H. Pais, J.R. Stone, Phys. Rev. Lett. 109, 151101 (2012).ADSCrossRefGoogle Scholar
  54. 54.
    F. Sébille, S. Figerou, V. de la Mota, Nucl. Phys. A 822, 51 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    F. Sébille, V. de la Mota, S. Figerou, Phys. Rev. C 84, 055801 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    B. Schuetrumpf, M.A. Klatt, K. Iida, J.A. Maruhn, K. Mecke, P.-G. Reinhard, Phys. Rev. C 87, 055805 (2013).ADSCrossRefGoogle Scholar
  57. 57.
    K. Nakazato, K. Oyamatsu, S. Yamada, Phys. Rev. Lett. 103, 132501 (2009).ADSCrossRefGoogle Scholar
  58. 58.
    K. Nakazato, K. Iida, K. Oyamatsu, Phys. Rev. C 83, 065811 (2011).ADSCrossRefGoogle Scholar
  59. 59.
    F.S. Bates, G.H. Fredrickson, Phys. Today 52, No. 2, 32 (1999).ADSCrossRefGoogle Scholar
  60. 60.
    G. Watanabe, K. Iida, K. Sato, Nucl. Phys. A 676, 455 (2000) 726.ADSCrossRefGoogle Scholar
  61. 61.
    W.G. Newton, M. Gearheart, D.H. Wen, B.A. Li, J. Phys.: Conf. Ser. 420, 012145 (2013).ADSGoogle Scholar
  62. 62.
    A.L. Watts, T.E. Strohmayer, Adv. Space Res. 40, 1446 (2007).ADSCrossRefGoogle Scholar
  63. 63.
    A.W. Steiner, A.L. Watts, Phys. Rev. Lett. 103, 181101 (2009).ADSCrossRefGoogle Scholar
  64. 64.
    H. Sotani, K. Nakazato, K. Iida, K. Oyamatsu, Phys. Rev. Lett. 108, 201101 (2012).ADSCrossRefGoogle Scholar
  65. 65.
    H. Sotani, K. Nakazato, K. Iida, K. Oyamatsu, Mon. Not. R. Astron. Soc. 428, L21 (2013).ADSCrossRefGoogle Scholar
  66. 66.
    T. Strohmayer, H.M. van Horn, S. Ogata, H. Iyetomi, S. Ichimaru, Astrophys. J. 375, 679 (1991).ADSCrossRefGoogle Scholar
  67. 67.
    S. Ogata, S. Ichimaru, Phys. Rev. A 42, 4867 (1990).ADSCrossRefGoogle Scholar
  68. 68.
    C.J. Pethick, A.Y. Potekhin, Phys. Lett. B 427, 7 (1998).ADSCrossRefGoogle Scholar
  69. 69.
    B.L. Schumaker, K.S. Thorne, Mon. Not. R. Astron. Soc. 203, 457 (1983).ADSMathSciNetGoogle Scholar
  70. 70.
    G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971).ADSCrossRefGoogle Scholar
  71. 71.
    C.J. Horowitz, J. Hughto, arXiv:0812.2650.
  72. 72.
    A.T. Deibel, A.W. Steiner, E.F. Brown, arXiv:1303.3270.
  73. 73.
    N. Chamel, Phys. Rev. C 85, 035801 (2012).ADSCrossRefGoogle Scholar
  74. 74.
    C.J. Pethick, N. Chamel, S. Reddy, Prog. Theor. Phys. Suppl. 186, 9 (2010).ADSCrossRefzbMATHGoogle Scholar
  75. 75.
    A. Passamonti, S.K. Lander, Mon. Not. R. Astron. Soc. 429, 767 (2013).ADSCrossRefGoogle Scholar
  76. 76.
    M. Gabler, P. Cerdá-Durán, N. Stergioulas, J.A. Font, E. Müller, arXiv:1304.3566.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Natural ScienceKochi UniversityKochiJapan
  2. 2.RIKEN Nishina CenterSaitamaJapan
  3. 3.Department of Human InformaticsAichi Shukutoku UniversityAichiJapan

Personalised recommendations