Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

  • Zhi-Gang Xiao
  • Gao-Chan Yong
  • Lie-Wen Chen
  • Bao-An Li
  • Ming Zhang
  • Guo-Qing Xiao
  • Nu Xu
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract.

The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the \( \pi^{-}\)/\( \pi^{+}\) ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the \( \pi^{-}\)/\( \pi^{+}\) ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the \( \pi^{-}\)/\( \pi^{+}\) ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more \( \pi^{-}\)/\( \pi^{+}\) data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K+/K0 ratio, \( \eta\) meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

References

  1. 1.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    B.A. Li et al., J. Phys. Conf. Ser. 312, 042006 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    B. Tsang et al., Phys. Rev. C 86, 015803 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L.W. Chen, in Proceedings of the 14th National Conference on Nuclear Structure in China (NSC2012) (World Scientific, Singapore, 2012) pp. 43--54, arXiv:1212.0284
  6. 6.
    B.A. Li et al., J. Phys. Conf. Ser. 413, 012021 (2013) arXiv:1212.1178 ADSCrossRefGoogle Scholar
  7. 7.
    B.A. Li et al., Phys. Rev. C 71, 014608 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Li, Z. Li et al., J. Phys. G: Nucl. Part. Phys. 31, 1359 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    G. Ferini et al., Phys. Rev. Lett. 97, 202301 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    B.A. Li, Phys. Rev. Lett. 88, 192701 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 650, 344 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    L.W. Chen, C.M. Ki, B.A. Li, Nucl. Phys. A 729, 809 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    G.C. Yong, B.A. Li, L.W. Chen, X.C. Zhang, Phys. Rev. C 80, 044608 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Q. Li, Z. Li, E. Zhao, R.K. Gupta, Phys. Rev. C 71, 054907 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    G.C. Yong, B.A Li, Phys. Let. B 723, 388 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 661, 82 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Y.G. Ma et al., Phys. Rev. C 85, 024618 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 781, 459 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Phys. Rev. C 69, 011603 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735, 563 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Z.G. Xiao et al., Phys. Rev. Lett. 102, 062502 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Z.G. Xiao et al., Sci. Sin. Phys. Mech. Astron. 41, 439 (2011)CrossRefGoogle Scholar
  24. 24.
    Z.Q. Feng, G.M. Jin, Phys. Lett. B 683, 140 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    W.J. Xie et al., Phys. Lett. B 718, 1510 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J. Xu, C.M. Ko, Y. Oh, Phys. Rev. C 81, 024910 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G.C. Yong, Eur. Phys. J. A 46, 399 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J. Xu, L.W. Chen, C.K. Ko, B.A. Li, Y.G. Ma, Phys. Rev. C 87, 067601 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    C. Xu, A. Li, B.A. Li, Phys. Rev. C 81, 064612 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    W. Zuo, I. Bombaci, U. Lombardo, contribution to this Topical IssueGoogle Scholar
  31. 31.
    C. Xu, A. Li, B.A. Li, J. Phys.: Conf. Ser. 420, 012190 (2013)Google Scholar
  32. 32.
    H.K. Lee, Mannque Rho, contribution to this Topical IssueGoogle Scholar
  33. 33.
    L.W. Chen et al., Phys. Rev. C 80, 014322 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    L.W. Chen, Sci. China Phys. Mech. Astron. 54, s124 (2011) arXiv:1101.2384 ADSCrossRefGoogle Scholar
  35. 35.
    W.Z. Jiang, B.A. Li, Phys. Rev. C 80, 044322 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    B.A. Li, Nucl. Phys. A 708, 365 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    H. Müller, B.D. Serot, Phys. Rev. C 52, 2072 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    B.A. Li, C.M. Ko, Nucl. Phys. A 618, 498 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    B.A. Li et al., Phys. Rev. C 67, 017601 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, Nucl. Phys. A 762, 147 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    M.D. Cozma, Phys. Lett. B 700, 139 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    W. Benenson et al., Phys. Rev. Lett. 43, 683 (1979)ADSCrossRefGoogle Scholar
  44. 44.
    S. Nagamiya et al., Phys. Rev. C 24, 971 (1981)ADSCrossRefGoogle Scholar
  45. 45.
    J. Harris et al., Phys. Lett. B 153, 377 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    R. Stock, Phys. Rep. 135, 259 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    G.F. Bertsch, Nature 283, 280 (1980)ADSCrossRefGoogle Scholar
  48. 48.
    H.R. Jaqaman, A.Z. Mekjian, L. Zamick, Phys. Rev. C 27, 2782 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    H.R. Jaqaman, A.Z. Mekjian, L. Zamick, Phys. Rev. C 29, 2067 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    H.R. Jaqaman, Phys. Rev. C 39, 169 (1988)ADSCrossRefGoogle Scholar
  51. 51.
    C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    C. Xu, B.A. Li, L.W. Chen, C.M. Ko, Nucl. Phys. A 865, 1 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    R. Chen, B.J. Cai, L.W. Chen, B.A. Li, X.H. Li, C. Xu, Phys. Rev. C 85, 024305 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    A. Akmal et al., Phys. Rev. C 58, 1804 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    C. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    D.H. Wen et al., Phys. Rev. Lett. 103, 211102 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    M. Zhang et al., Phys. Rev. C 80, 034616 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    M. Zhang et al., Phys. Rev. C 82, 044602 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    B. Hong and the FOPI Collaboration, Phys. Rev. C 66, 034901 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)ADSCrossRefGoogle Scholar
  62. 62.
    KaoS Collaboration (C. Sturm et al.), Phys. Rev. Lett. 86, 39 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    Ch. Hartnack, H. Oeschler et al., Phys. Rev. Lett. 96, 012302 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    C. Fuchs et al., Phys. Rev. Lett. 86, 1974 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    X. Lopez, Y.J. Kim et al., Phys. Rev. C 75, 011901(R) (2007)ADSCrossRefGoogle Scholar
  66. 66.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)CrossRefGoogle Scholar
  67. 67.
    Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 552, 549 (1993)ADSCrossRefGoogle Scholar
  68. 68.
    M. Thomere, C. Hartnack, G. Wolf, J. Aichelin, Phys. Rev. C 75, 064902 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    A. Depaoli, K. Niita, W. Cassing, U. Mosel, C.M. Ko, Phys. Lett. B 219, 194 (1989)ADSCrossRefGoogle Scholar
  70. 70.
    B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)ADSCrossRefGoogle Scholar
  71. 71.
    L. Shi, P. Danielewicz, Europhys. Lett. 49, 34 (2000)ADSCrossRefGoogle Scholar
  72. 72.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)ADSCrossRefGoogle Scholar
  73. 73.
    H. Nifenecker, J.A. Pinston, Annu. Rev. Nucl. Part. Sci. 40, 113 (1990)ADSCrossRefGoogle Scholar
  74. 74.
    W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188, 363 (1990)ADSCrossRefGoogle Scholar
  75. 75.
    B.A. Remington, M. Blann, G.F. Bertsch, Phys. Rev. Lett. 57, 2909 (1986)ADSCrossRefGoogle Scholar
  76. 76.
    C.M. Ko, G.F. Bertsch, J. Aichelin, Phys. Rev. C 31, 2324(R) (1985)ADSCrossRefGoogle Scholar
  77. 77.
    W. Cassing, T. Biro, U. Mosel, M. Tohyama, W. Bauer, Phys. Lett. B 181, 217 (1986)ADSCrossRefGoogle Scholar
  78. 78.
    W. Bauer, G.F. Bertsch, W. Cassing, U. Mosel, Phys. Rev. C 34, 2127 (1986)ADSCrossRefGoogle Scholar
  79. 79.
    J. Stevenson et al., Phys. Rev. Lett. 57, 555 (1986)ADSCrossRefGoogle Scholar
  80. 80.
    G.C. Yong, W. Zuo, X.C. Zhang, Phys. Lett. B 705, 240 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    H. Nifenecker, J.P. Bondorf, Nucl. Phys. A 442, 478 (1985)ADSCrossRefGoogle Scholar
  82. 82.
    K. Nakayama, G.F. Bertsch, Phys. Rev. C 34, 2190 (1986)ADSCrossRefGoogle Scholar
  83. 83.
    M. Schäffer, T.S. Biro, W. Cassing, U. Mosel, H. Nifenecker, J.A. Pinstan, Z. Phys. A 339, 391 (1991)ADSCrossRefGoogle Scholar
  84. 84.
    N. Gan et al., Phys. Rev. C 49, 298 (1994)ADSCrossRefGoogle Scholar
  85. 85.
    R.G.E. Timmermans, T.D. Penninga, B.F. Gibson, M.K. Liou, Phys. Rev. C 73, 034006 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    P. Russotto et al., J. Phys. Conf. Ser. 420, 012092 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    P. Russotto, M.D. Cozma, contribution to this Topical IssueGoogle Scholar
  88. 88.
    W. Trautmann, contribution to this Topical IssueGoogle Scholar
  89. 89.
    T. Kobayashi et al., Nucl. Instrum. Methods B 317, 294 (2013)ADSCrossRefGoogle Scholar
  90. 90.
    B. Hong, contribution to this Topical IssueGoogle Scholar
  91. 91.
    J.W. Xia et al., Nucl. Instrum. Methods A 488, 11 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    Z.G. Xiao et al., J. Phys. G: Nucl. Part. Phys. 36, 064040 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    M. Zhang et al., Chin. Phys. C 34, 1100 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    C.C. Guo et al., Sci. China A 55, 252 (2012)CrossRefGoogle Scholar
  95. 95.
    L. Ou et al., Phys. Rev. C 78, 044609 (2008)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhi-Gang Xiao
    • 1
    • 2
  • Gao-Chan Yong
    • 3
  • Lie-Wen Chen
    • 4
  • Bao-An Li
    • 5
  • Ming Zhang
    • 6
  • Guo-Qing Xiao
    • 3
  • Nu Xu
    • 7
  1. 1.Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  4. 4.Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Department of Physics and AstronomyTexas A&M University-CommerceTexasUSA
  6. 6.National Institute of MetrologyBeijingChina
  7. 7.Institute of Particle PhysicsCentral China Normal UniversityWuhanChina

Personalised recommendations