Advertisement

Timescale for isospin equilibration in projectile breakup

  • S. HudanEmail author
  • R. T. deSouza
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract.

Isospin transport within a nuclear system is influenced by the density dependence of the symmetry energy. Studying isospin transport over relatively long times can therefore be a powerful tool to learn about the symmetry energy. The transiently deformed PLF* formed in an intermediate energy heavy-ion collision presents an opportunity to study isospin transport for a variety of initial configurations. Isospin transport is found to persist over several hundred fm/c , establishing the timescale for isospin equilibration.

Keywords

Angular Distribution Density Dependence Target Nucleus Symmetry Energy Light Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    P. Möller et al., Phys. Rev. Lett. 108, 052501 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    A.W. Steiner et al., Phys. Rep. 411, 325 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    H.T. Janka et al., Phys. Rep. 442, 38 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Famiano et al., Phys. Rev. Lett. 97, 052701 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Kohley et al., Phys. Rev. C 85, 064605 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    I. Lombardo et al., Phys. Rev. C 82, 014608 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Kohley et al., Phys. Rev. C 86, 044605 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    T.X. Liu et al., Phys. Rev. C 76, 034603 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    E. Galichet et al., Phys. Rev. C 79, 064614 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Kohley et al., Phys. Rev. C 82, 064601 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Z.Y. Sun et al., Phys. Rev. C 82, 051603(R) (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Kohley et al., Phys. Rev. C 83, 044601 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    G. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    V. Baran et al., Phys. Rev. C 72, 064620 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J. Rizzo et al., Nucl. Phys. A 806, 79 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    D. Thériault et al., Phys. Rev. C 74, 051602(R) (2006)ADSCrossRefGoogle Scholar
  25. 25.
    C.P. Montoya et al., Phys. Rev. Lett. 73, 3070 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    E. Plagnol et al., Phys. Rev. C 61, 014606 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    L. Gingras et al., Phys. Rev. C 65, 061604(R) (2002)ADSCrossRefGoogle Scholar
  28. 28.
    J. Lukasik et al., Phys. Rev. C 66, 064606 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    P.M. Milazzo et al., Nucl. Phys. A. 703, 466 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Larochelle et al., Phys. Rev. C 62, 051602(R) (2000)ADSCrossRefGoogle Scholar
  32. 32.
    H. Xu et al., Phys. Rev. C 65, 061602(R) (2002)ADSCrossRefGoogle Scholar
  33. 33.
    S. Hudan et al., Phys. Rev. C 71, 054604 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    K. Brown et al., Phys. Rev. C 87, 061601(R) (2013)ADSCrossRefGoogle Scholar
  35. 35.
    G. Casini et al., Phys. Rev. Lett. 71, 2567 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    S. Piantelli et al., Phys. Rev. Lett. 88, 052701 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A.B. McIntosh et al., Phys. Rev. C 81, 034603 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    F. Bocage et al., Nucl. Phys. A 676, 391 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    B. Davin et al., Phys. Rev. C 65, 064614 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    J. Colin et al., Phys. Rev. C 67, 064603 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    E. De Filippo et al., Phys. Rev. C 71, 044602 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    E. De Filippo et al., Phys. Rev. C 86, 014610 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    S. Hudan et al., Phys. Rev. C 86, 021603(R) (2012)ADSCrossRefGoogle Scholar
  44. 44.
    P. Glässel et al., Z. Phys. A 310, 189 (1983)ADSCrossRefGoogle Scholar
  45. 45.
    J.F. Lecolley et al., Phys. Lett. B 354, 202 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    P. Russotto et al., Phys. Rev. C 81, 064605 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    J.C. Steckmeyer et al., Nucl. Phys. A 686, 537 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    N. Carjan, M. Kaplan, Phys. Rev. C 45, 2185 (1992)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Exploration of Energy and MatterIndiana UniversityBloomingtonUSA

Personalised recommendations