Advertisement

Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4\( \pi\) detector

  • E. De FilippoEmail author
  • A. Pagano
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract.

Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density \( \rho_{0}=0.16\) fm-3 down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array.

Keywords

Symmetry Energy Symmetry Potential Light Charged Particle Light Fragment Asymmetric Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bao-An Li, Lie-Wen Chen, Che Ming Ko, Phys. Rep. 464, 113 (2008)ADSGoogle Scholar
  2. 2.
    Bao-An Li, W.U. Schröder (Editors), Isospin Physics in Heavy Ion Collisions at Intermediate Energies, (Nova Science Publishing, Inc., Huntington, NY, 2001)Google Scholar
  3. 3.
    M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)ADSGoogle Scholar
  4. 4.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)ADSGoogle Scholar
  5. 5.
    M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009)ADSGoogle Scholar
  6. 6.
    E. Galichet et al., Phys. Rev. C 79, 064614 (2009)ADSGoogle Scholar
  7. 7.
    E. Galichet, M. Colonna, B. Borderie, M.F. Rivet, Phys. Rev. C 79, 064615 (2009)ADSGoogle Scholar
  8. 8.
    M.A. Famiano et al., Phys. Rev. Lett. 97, 052701 (2006)ADSGoogle Scholar
  9. 9.
    Z. Kohley et al., Phys. Rev. C 83, 044601 (2011)ADSGoogle Scholar
  10. 10.
    H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000)ADSGoogle Scholar
  11. 11.
    M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001)ADSGoogle Scholar
  12. 12.
    F. Amorini et al., Phys. Rev. Lett. 102, 112701 (2009)ADSGoogle Scholar
  13. 13.
    E. De Filippo et al., Phys. Rev. C 86, 014610 (2012)ADSGoogle Scholar
  14. 14.
    J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010)ADSGoogle Scholar
  15. 15.
    R. Wada et al., Phys. Rev. C 85, 064618 (2012)ADSGoogle Scholar
  16. 16.
    W. Trautmann, H.H. Wolter, Int. J. Mod. Phys. E 21, 1230003 (2012)ADSGoogle Scholar
  17. 17.
    P. Russotto et al., J. Phys: Conf. Ser. 420, 012092 (2013)ADSGoogle Scholar
  18. 18.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011)ADSGoogle Scholar
  19. 19.
    P. Marini et al., Nucl. Instrum. Methods A 707, 80 (2013)ADSGoogle Scholar
  20. 20.
    A. Pagano et al., Nucl. Phys. A 734, 504 (2004)ADSGoogle Scholar
  21. 21.
    A. Pagano, Nucl. Phys. News 22, 28 (2012)Google Scholar
  22. 22.
    N. Le Neindre et al., Nucl. Instrum. Methods A 490, 251 (2002)ADSGoogle Scholar
  23. 23.
    M. Alderighi et al., Nucl. Instrum. Methods A 489, 257 (2002)ADSGoogle Scholar
  24. 24.
    M. Alderighi et al., IEEE Trans. Nucl. Sci. 52, 1624 (2005)ADSGoogle Scholar
  25. 25.
    S. Pirrone et al., AIP Conf. Proc. 1524, 7 (2013)ADSGoogle Scholar
  26. 26.
    G. Raciti et al., Nucl. Instrum. Methods B 266, 4632 (2008)ADSGoogle Scholar
  27. 27.
    L. Acosta et al., Nucl. Instrum. Methods A 715, 56 (2013)ADSGoogle Scholar
  28. 28.
    C. Cavata et al., Phys. Rev. C 42, 1760 (1990)ADSGoogle Scholar
  29. 29.
    P. Russotto, Doctoral Thesis, Catania University (2006)Google Scholar
  30. 30.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005)ADSGoogle Scholar
  31. 31.
    R. Płaneta et al., Phys. Rev. C 77, 014610 (2008)ADSGoogle Scholar
  32. 32.
    E. De Filippo et al., Phys. Rev. C 71, 044602 (2005)ADSGoogle Scholar
  33. 33.
    E. Geraci et al., Nucl. Phys. A 732, 173 (2004)ADSGoogle Scholar
  34. 34.
    J.D. Frankland et al., Nucl. Phys. A 689, 905 (2001)ADSGoogle Scholar
  35. 35.
    B. Borderie, J. Phys. G: Nucl. Part. Phys. 28, R217 (2002)ADSGoogle Scholar
  36. 36.
    L. Francalanza et al., J. Phys.: Conf. Ser. 420, 012084 (2013)ADSGoogle Scholar
  37. 37.
    C.P. Montoya et al., Phys. Rev. Lett. 73, 3070 (1994)ADSGoogle Scholar
  38. 38.
    V. Baran, M. Colonna, M. Di Toro, Nucl. Phys. A 730, 329 (2004)ADSGoogle Scholar
  39. 39.
    J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996)ADSGoogle Scholar
  40. 40.
    M. Di Toro, A. Olmi, R. Roy, Eur. Phys. J. A 30, 65 (2006)ADSGoogle Scholar
  41. 41.
    V. Baran et al., Phys. Rev. C 72, 064620 (2005)ADSGoogle Scholar
  42. 42.
    E. De Filippo, Proceedings of the INPC 2013 Conference (Firenze, Italy 2-7 June 2013), to be published in EPJ Web of ConferencesGoogle Scholar
  43. 43.
    Z. Kohley et al., Phys. Rev. C 86, 044605 (2012)ADSGoogle Scholar
  44. 44.
    L. Gingras et al., Phys. Rev. C 65, 061604(R) (2002)ADSGoogle Scholar
  45. 45.
    S. Piantelli et al., Phys. Rev. Lett. 88, 052701 (2002)ADSGoogle Scholar
  46. 46.
    S. Hudan et al., Phys. Rev. C 86, 021603(R) (2012)ADSGoogle Scholar
  47. 47.
    P. Russotto et al., Phys. Rev. C 81, 064605 (2010)ADSGoogle Scholar
  48. 48.
    V. Baran, M. Colonna, M. Di Toro, R. Zus et al., Phys. Rev. C 85, 054611 (2012)ADSGoogle Scholar
  49. 49.
    L.G. Sobotka et al., Phys. Rev. C 62, 031603 (2000)ADSGoogle Scholar
  50. 50.
    S. Piantelli et al., Phys. Rev. C 74, 034609 (2006)ADSGoogle Scholar
  51. 51.
    J. Wilczyński et al., Int. J. Mod. Phys. E 14, 353 (2005)ADSGoogle Scholar
  52. 52.
    D.J. Hinde et al., Nucl. Phys. A 472, 318 (1987)ADSGoogle Scholar
  53. 53.
    E. De Filippo et al., Phys. Rev. C 71, 064604 (2005)ADSGoogle Scholar
  54. 54.
    J. Rizzo et al., Nucl. Phys. A 806, 79 (2008)ADSGoogle Scholar
  55. 55.
    M. Papa et al., Phys. Rev. C 75, 054616 (2007)ADSGoogle Scholar
  56. 56.
    M. Papa, T. Maruyama, A. Bonasera, Phys. Rev. C 64, 024612 (2001)ADSGoogle Scholar
  57. 57.
    E. De Filippo et al., J. Phys.: Conf. Ser. 420, 012105 (2013)ADSGoogle Scholar
  58. 58.
    J. Lukasik et al., Phys. Rev. C 55, 1906 (1997)ADSGoogle Scholar
  59. 59.
    D.V. Shetty et al., Phys. Rev. C 68, 054605 (2003)ADSGoogle Scholar
  60. 60.
    D. Theriault et al., Phys. Rev. C 74, 051602(R) (2006)ADSGoogle Scholar
  61. 61.
    S. Barlini et al., Phys. Rev. C 87, 054607 (2013)ADSGoogle Scholar
  62. 62.
    L. Sobotka, Phys. Rev C 50, 1272(R) (1994)ADSGoogle Scholar
  63. 63.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSGoogle Scholar
  64. 64.
    I. Lombardo et al., Phys. Rev. C 82, 014608 (2010)ADSGoogle Scholar
  65. 65.
    K. Brown et al., Phys. Rev. C 87, 061601R (2013)ADSGoogle Scholar
  66. 66.
    R.J. Charity et al., Nucl. Phys. A 483, 371 (1988)ADSGoogle Scholar
  67. 67.
    I. Skwira-Chalot et al., Int. J. Mod. Phys. E 21, 1250033 (2012)ADSGoogle Scholar
  68. 68.
    P. Glässel et al., Z. Phys. A 310, 189 (1983)ADSGoogle Scholar
  69. 69.
    A.A. Stefanini et al., Z. Phys. A 351, 167 (1995)ADSGoogle Scholar
  70. 70.
    F. Bocage et al., Nucl. Phys. A 676, 391 (2000)ADSGoogle Scholar
  71. 71.
    J. Colin et al., Phys. Rev. C 67, 064603 (2003)ADSGoogle Scholar
  72. 72.
    A.B. McIntosh et al., Phys. Rev. C 81, 034603 (2010)ADSGoogle Scholar
  73. 73.
    G. Casini et al., Phys. Rev. Lett. 71, 2567 (1993)ADSGoogle Scholar
  74. 74.
    J. Wilczyński et al., Phys. Rev. C 81, 024605 (2010)ADSGoogle Scholar
  75. 75.
    I. Skwira-Chalot et al., Phys. Rev. Lett. 101, 262701 (2008)ADSGoogle Scholar
  76. 76.
    J. Wilczyński et al., Phys. Rev. C 81, 067604 (2010)ADSGoogle Scholar
  77. 77.
    Y. Li et al., Nucl. Phys. A 902, 1 (2013)ADSGoogle Scholar
  78. 78.
    P. Russotto, to be submittedGoogle Scholar
  79. 79.
    The INKIISSY experiment (Inverse Kinematics Isobaric System) was performed at INFN-LNS on May 2013 by the EXOCHIM CollaborationGoogle Scholar
  80. 80.
    J. Tian et al., Phys. Rev. C 82, 054608 (2010)ADSGoogle Scholar
  81. 81.
    M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004)ADSGoogle Scholar
  82. 82.
    I. Lombardo et al., J. Phys.: Conf. Ser. 420, 012094 (2013)ADSGoogle Scholar
  83. 83.
    Z.Y. Sun et al., Phys. Rev. C 82, 051603(R) (2010)ADSGoogle Scholar
  84. 84.
    Bao-An Li, G.C. Yong, W. Zuo, Phys. Rev. C 71, 014608 (2005)ADSGoogle Scholar
  85. 85.
    T.X. Liu et al., Phys. Rev. C 76, 034603 (2007)ADSGoogle Scholar
  86. 86.
    A.L. Keksis et al., Phys. Rev. C 81, 054602 (2010)ADSGoogle Scholar
  87. 87.
    B. Davin et al., Nucl. Instrum. Methods A 473, 302 (2001)ADSGoogle Scholar
  88. 88.
    F. Rami et al., Phys. Rev. Lett. 84, 1120 (2000)ADSGoogle Scholar
  89. 89.
    G. Lehaut et al., Phys. Rev. Lett. 104, 232701 (2010)ADSGoogle Scholar
  90. 90.
    Y. Zhang, Z. Li, Phys. Rev. C 71, 024604 (2005)ADSGoogle Scholar
  91. 91.
    Y. Zhang et al., Phys. Rev. C 85, 024602 (2012)ADSGoogle Scholar
  92. 92.
    A. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012)ADSGoogle Scholar
  93. 93.
    A. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. Lett. 765, 1 (2013)ADSGoogle Scholar
  94. 94.
    A. Carbone et al., Phys. Rev. C 81, 041301(R) (2010)ADSGoogle Scholar
  95. 95.
    X. Roca-Maza et al., Phys. Rev. Lett. 106, 252501 (2011)ADSGoogle Scholar
  96. 96.
    S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012)ADSGoogle Scholar
  97. 97.
    M.B. Tsang et al., Phys. Rev. C 64, 054615 (2001)ADSGoogle Scholar
  98. 98.
    A. Le Févre et al., Phys. Rev. Lett. 94, 162701 (2005)ADSGoogle Scholar
  99. 99.
    M. Colonna, M.B. Tsang, Eur. Phys. J. A 30, 165 (2006)ADSGoogle Scholar
  100. 100.
    S. Galanopoulos et al., Nucl. Phys. A 837, 145 (2010)ADSGoogle Scholar
  101. 101.
    A.S. Botvina, O.V. Lozhkin, W. Trautmann, Phys. Rev. C 65, 044610 (2002)ADSGoogle Scholar
  102. 102.
    D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C 76, 024606 (2007)ADSGoogle Scholar
  103. 103.
    A. Ono et al., Phys. Rev. C 68, 051601R (2003)ADSGoogle Scholar
  104. 104.
    C.A. Dorso, P.A. Giménez Molinelli, J.A. López, J. Phys. G: Nucl. Part. Phys. 38, 115101 (2011)ADSGoogle Scholar
  105. 105.
    M. Colonna, F. Matera, Phys. Rev. C 71, 064605 (2005)ADSGoogle Scholar
  106. 106.
    P. Marini et al., Phys. Rev. C 85, 034617 (2012)ADSGoogle Scholar
  107. 107.
    E. Geraci et al., Eur. Phys. J. ST 150, 21 (2007)Google Scholar
  108. 108.
    E. De Filippo et al., Acta. Phys. Pol. B 37, 199 (2006)ADSGoogle Scholar
  109. 109.
    H. Singh et al., EPJ Web of Conference 31, 00014 (2012)Google Scholar
  110. 110.
    S. Wuenschel et al., Phys. Rev. C 79, 061602(R) (2009)ADSGoogle Scholar
  111. 111.
    M.V. Ricciardi et al., Nucl. Phys. A 733, 299 (2004)ADSGoogle Scholar
  112. 112.
    M. D’Agostino et al., Nucl. Phys. A 875, 139 (2012)ADSGoogle Scholar
  113. 113.
    G. Lanzanò et al., Phys. Lett. B 332, 31 (1994)ADSGoogle Scholar
  114. 114.
    L.B. Yang et al., Phys. Rev. C 60, 041602(R) (2005)ADSGoogle Scholar
  115. 115.
    E.M. Winchester et al., Phys. Rev. C 63, 014601 (2000)ADSGoogle Scholar
  116. 116.
    G. Ademard et al., Phys. Rev. C 83, 054619 (2011)ADSGoogle Scholar
  117. 117.
    M. D’Agostino et al., Nucl. Phys. A 861, 47 (2011)ADSGoogle Scholar
  118. 118.
    J. Su, F.S. Zhang, B.A. Bian, Phys. Rev. C 83, 014608 (2011)ADSGoogle Scholar
  119. 119.
    Ad.R. Raduta, F. Gulminelli, Phys. Rev. C 75, 044605 (2007)ADSGoogle Scholar
  120. 120.
    J.R. Winkelbauer, S.R. Souza, M.B. Tsang, Phys. Rev. C 88, 044613 (2013)ADSGoogle Scholar
  121. 121.
    W.A. Friedman, G.F. Bertsch, Phys. Rev. C 76, 057301 (2007)ADSGoogle Scholar
  122. 122.
    G. Casini et al., Phys. Rev. C 86, 011602(R) (2012)ADSGoogle Scholar
  123. 123.
    I. Lombardo et al., Phys. Rev. C 84, 024613 (2011)ADSGoogle Scholar
  124. 124.
    P. Lautesse et al., Eur. Phys. J. A 27, 349 (2006)ADSGoogle Scholar
  125. 125.
    R. Moro et al., Eur. Phys. J. A 48, 159 (2012)ADSGoogle Scholar
  126. 126.
    A. Sierk, Phys. Rev. Lett. 55, 582 (1985)ADSGoogle Scholar
  127. 127.
    P. Danielewicz, J. Lee, Nucl Phys. A 818, 36 (2009) and arXiv:1307:4130 (2013) to be published in Nucl. Phys. AADSGoogle Scholar
  128. 128.
    M. Colonna et al., Phys. Rev. C 57, 1410 (1998)ADSGoogle Scholar
  129. 129.
    G. Cardella et al., Phys. Rev. C 85, 064609 (2012)ADSGoogle Scholar
  130. 130.
    M. Papa, G. Giuliani, Eur. Phys. J. A 39, 117 (2009)ADSGoogle Scholar
  131. 131.
    M. Colonna, A. Ono, J. Rizzo, Phys. Rev. C 82, 054613 (2010)ADSGoogle Scholar
  132. 132.
    D.D.S. Coupland et al., Phys. Rev. C 84, 054603 (2011)ADSGoogle Scholar
  133. 133.
    G. Verde, A. Chbihi, R. Ghetti, J. Helgesson, Eur. Phys. J. A 30, 81 (2006)ADSGoogle Scholar
  134. 134.
    Ad.R. Raduta et al., Phys. Lett. B 705, 65 (2011)ADSGoogle Scholar
  135. 135.
    G. Verde et al., J. Phys.: Conf. Ser. 420, 012158 (2013)ADSGoogle Scholar
  136. 136.
    S. Nyibule et al., Nucl. Instrum. Methods A 728, 36 (2013)ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.INFNSezione di CataniaCataniaItaly

Personalised recommendations