Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter

Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy Esym(ρ) and its density slope L(ρ) at an arbitrary density ρ can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the Esym(ρ) and L(ρ) are analyzed in detail at different densities. It is shown that the behavior of Esym is mainly determined by the first-order symmetry potential Usym,1(ρ, k) of the single-nucleon potential. The density slope L(ρ) depends not only on the first-order symmetry potential Usym,1(ρ, k) but also on the second-order one Usym,2(ρ, k). Both the Usym,1(ρ, k) and Usym,2(ρ, k) at normal density ρ0 are constrained by the isospin- and momentum-dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The Usym,2(ρ, k) especially at high density and momentum affects significantly the L(ρ), but it is theoretically poorly understood and currently there is almost no experimental constraints known.

References

  1. 1.
    B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    Bao-An Li, W. Udo Schröer (Editors) Isospin Physics in Heavy-Ion Collisions at Intermediate Energies (Nova Science Publishers, Inc., New York, 2001).Google Scholar
  4. 4.
    J.M. Lattimer, M. Prakash, Science 304, 536 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Siemens, Nucl. Phys. A 141, 225 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    C.-H. Lee, T.T. Kuo, G.Q. Li, G.E. Brown, Phys. Rev. C 57, 3488 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    A.W. Steiner, Phys. Rev. C 74, 045808 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    O. Sjöberg, Nucl. Phys. A 222, 161 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    M. Di Toro, V. Baran, M. Colonna, V. Greco, J. Phys. G: Nucl. Part. Phys. 37, 083101 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    K. Sumiyoshi, H. Toki, Astrophys. J. 422, 700 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    I. Bombaci, in Isospin Physics in Heavy-Ion Collisions at Intermediate Energies (Nova Science Publishers, Inc., New York, 2001) Chapt. 2.Google Scholar
  16. 16.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    B.A. Li, L.W. Chen, Phys. Rev. C 72, 064611 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    M.B. Tsang, Yingxun Zhang, P. Danielewicz, M. Famiano, Zhuxia Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    M. Centelles, X. Roca-Maza, X. Vinas, M. Warda, Phys. Rev. Lett. 102, 122502 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    Z.G. Xiao, B.A. Li, L.W. Chen, G.C. Yong, M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    C.B. Das, S. Das Gupta, C. Gale, B.A. Li, Phys. Rev. C 67, 034611 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Phys. Rev. C 69, 011603(R) (2004).ADSCrossRefGoogle Scholar
  24. 24.
    B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735, 563 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    S. Ulrych, H. Müther, Phys. Rev. C 56, 1788 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    E.N.E. van Dalen, C. Fuchs, A. Faessler, Nucl. Phys. A 74, 227 (2004).CrossRefGoogle Scholar
  27. 27.
    W. Zuo, L.G. Cao, B.A. Li, U. Lombardo, C.W. Shen, Phys. Rev. C 72, 014005 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750, 259 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    J.A. McNeil, J.R. Shepard, S.J. Wallace, Phys. Rev. Lett. 50, 1439 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C 72, 064606 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    Z.H. Li, L.W. Chen, C.M. Ko, B.A. Li, H.R. Ma, Phys. Rev. C 74, 044613 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    V.R. Pandharipande, V.K. Garde, Phys. Lett. B 39, 608 (1972).ADSCrossRefGoogle Scholar
  34. 34.
    R.B. Wiringa et al., Phys. Rev. C 38, 1010 (1988).ADSCrossRefGoogle Scholar
  35. 35.
    M. Kutschera, Phys. Lett. B 340, 1 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    C. Xu, B.A. Li, L.W. Chen, C.M. Ko, Nucl. Phys. A 865, 1 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    C. Xu, B.A. Li, Phys. Rev. C 81, 044603 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    C. Xu, B.A. Li, Phys. Rev. C 81, 064612 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    R. Chen, B.J. Cai, L.W. Chen, B.A. Li, X.H. Li, C. Xu, Phys. Rev. C 85, 024305 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    X.H. Li, B.J. Cai, L.W. Chen, R. Chen, B.A. Li, C. Xu, Phys. Lett. B 721, 101 (2013).ADSCrossRefGoogle Scholar
  42. 42.
    Nuclear Density Functional Theory, Nuclear Structure Near the Limits of Stability (INT-05-3) September 26 to December 2, 2005, http://www.int.washington.edu/PROGRAMS/dft.html.
  43. 43.
    B.J. Cai, L.W. Chen, Phys. Lett. B 711, 104 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    N.M. Hugenholtz, L. Van Hove, Physica 24, 363 (1958).ADSCrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    L. Satpathy, V.S. Uma Maheswari, R.C. Nayak, Phys. Rep. 319, 85 (1999).ADSCrossRefGoogle Scholar
  46. 46.
    K.A. Brueckner, J. Dabrowski, Phys. Rev. 134, B722 (1964).ADSCrossRefGoogle Scholar
  47. 47.
    J. Dabrowski, P. Haensel, Phys. Lett. B 42, 163 (1972).ADSCrossRefGoogle Scholar
  48. 48.
    J. Dabrowski, P. Haensel, Phys. Rev. C 7, 916 (1973).ADSCrossRefGoogle Scholar
  49. 49.
    J. Dabrowski, P. Haensel, Can. J. Phys. 52, 1768 (1974).ADSGoogle Scholar
  50. 50.
    A.M. Lane, Nucl. Phys. 35, 676 (1962).CrossRefGoogle Scholar
  51. 51.
    J. Decharge, D. Gogny, Phys. Rev. C 21, 1568 (1980).ADSCrossRefGoogle Scholar
  52. 52.
    Z.H. Li, L.W. Chen, C.M. Ko, B.A. Li, H.R. Ma, Phys. Rev. C 74, 044613 (2006).ADSCrossRefGoogle Scholar
  53. 53.
    D.P. Murdock, C.J. Horowitz, Phys. Rev. C 35, 1442 (1987).ADSCrossRefGoogle Scholar
  54. 54.
    J.A. McNeil, L. Ray, S.J. Wallace, Phys. Rev. C 27, 2123 (1983).ADSCrossRefGoogle Scholar
  55. 55.
    E.N.E. van Dalen, C. Fuchs, A. Faessler, Phys. Rev. C 72, 065803 (2005).ADSCrossRefGoogle Scholar
  56. 56.
    W. Zuo, U. Lombardo, H.-J. Schulze, Z.H. Li, Phys. Rev. C 74, 014317 (2006).ADSCrossRefGoogle Scholar
  57. 57.
    M.A. Preston, R.K. Bhaduri, Structure of the Nucleus (Addison-Wesley, Reading, MA, 1975) p. 191--202.Google Scholar
  58. 58.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988).ADSCrossRefGoogle Scholar
  59. 59.
    P.E. Hodgson, The Nucleon Optical Potential (World Scientific Publishing, Sigapore, 1994) p. 7.Google Scholar
  60. 60.
    G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).ADSCrossRefGoogle Scholar
  61. 61.
    C. Mahaux, R. Sartor, in Advances in Nuclear Physics, edited by J.W. Negele, E. Vogt, Vol. 20 (New York, Plenum, 1991), pp. 1-223.Google Scholar
  62. 62.
    S. Hama, B.C. Clark, E.D. Cooper, H.S. Sherif, R.L. Mercer, Phys. Rev. C 41, 2737 (1990).ADSCrossRefGoogle Scholar
  63. 63.
    A.J. Koning et al., Nucl. Phys. A 713, 231 (2003).ADSCrossRefGoogle Scholar
  64. 64.
    J.-P. Jeukenne et al., Phys. Rev. C 43, 2211 (1991).ADSCrossRefGoogle Scholar
  65. 65.
    J. Rapaport et al., Nucl. Phys. A 330, 15 (1979).ADSCrossRefGoogle Scholar
  66. 66.
    R.P. De Vito, NSCL/MSU report-363 (1981).Google Scholar
  67. 67.
    K. Kwiatkowski et al., Nucl. Phys. A 301, 349 (1978).ADSCrossRefGoogle Scholar
  68. 68.
    D.M. Patterson et al., Nucl. Phys. A 263, 261 (1976).ADSCrossRefGoogle Scholar
  69. 69.
    Y.L. Han et al., Phys. Rev. C 81, 024616 (2010).ADSCrossRefGoogle Scholar
  70. 70.
    O.V. Bespalova et al., J. Phys. G 29, 1193 (2003).ADSCrossRefGoogle Scholar
  71. 71.
    R.L. Varner et al., Phys. Rep. 201, 57 (1991).ADSCrossRefGoogle Scholar
  72. 72.
    F.D. Becchetti, G.W. Greenlees, Phys. Rev. 182, 1190 (1969).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Department of Physics and AstronomyTexas A&M University-CommerceCommerceUSA
  3. 3.Department of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics and CosmologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations