Advertisement

Symmetry energy from QCD sum rules

  • Kie Sang Jeong
  • Su Houng LeeEmail author
Review
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy

Abstract

We review the recent attempts to calculate the nuclear symmetry energy from QCD sum rules. Calculating the difference between the proton and neutron correlation function in an isospin asymmetric nuclear matter within the QCD sum rule approach, the potential part of the nuclear symmetry energy can be expressed in terms of local operators. We find that the scalar (vector) self-energy part gives negative (positive) contribution to the nuclear symmetry energy, consistent with the results from relativistic mean-field theories. Moreover, the magnitudes are consistent with phenomenological estimates. In terms of the operators, we find that an important contribution to self-energies contributing to the symmetry energy comes from the twist-4 matrix elements, whose leading density dependence can be extracted from deep inelastic scattering experiments. Our result also extends an early success of the QCD sum rule method in understanding the symmetric nuclear matter in terms of QCD variables to the asymmetric nuclear matter case.

Keywords

Operator Product Expansion Symmetry Energy Nuclear Medium Nuclear Symmetry Energy Asymmetric Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Jeong, S.H. Lee, Phys. Rev. C 87, 015204 (2013).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    L.W. Chen, Phys. Rev. C 83, 044308 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    S.J. Wallace, Annu. Rev. Nucl. Part. Sci. 37, 267 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  6. 6.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    B.L. Ioffe, Nucl. Phys. B 188, 317 (1981) 191.ADSCrossRefGoogle Scholar
  11. 11.
    Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Phys. Lett. B 102, 175 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Nucl. Phys. B 197, 55 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    E.G. Drukarev, E.M. Levin, Nucl. Phys. A 511, 679 (1990) 516.ADSCrossRefGoogle Scholar
  14. 14.
    E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. 27, 77 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. Lett. 67, 961 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Furnstahl, D.K. Griegel, T.D. Cohen, Phys. Rev. C 46, 1507 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    X.m. Jin, T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 47, 2882 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    X.m. Jin, M. Nielsen, T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 49, 464 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    T.D. Cohen, R.J. Furnstahl, D.K. Griegel, X.-m. Jin, Prog. Part. Nucl. Phys. 35, 221 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    E.G. Drukarev, M.G. Ryskin, V.A. Sadovnikova, Phys. Rev. C 70, 065206 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    E.G. Drukarev, M.G. Ryskin, V.A. Sadovnikova, Phys. At. Nucl. 75, 334 (2012).CrossRefGoogle Scholar
  22. 22.
    E.L. Kryshen, Phys. Rev. C 84, 055205 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    H.D. Politzer, Nucl. Phys. B 172, 349 (1980).ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    E.V. Shuryak, A.I. Vainshtein, Nucl. Phys. B 199, 451 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    E.V. Shuryak, A.I. Vainshtein, Phys. Lett. B 105, 65 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Jaffe, M. Soldate, Phys. Lett. B 105, 467 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    R.L. Jaffe, M. Soldate, Phys. Rev. D 26, 49 (1982).ADSCrossRefGoogle Scholar
  28. 28.
    R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 207, 1 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 212, 29 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    S. Choi, T. Hatsuda, Y. Koike, S.H. Lee, Phys. Lett. B 312, 351 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    S.H. Lee, Phys. Rev. D 49, 2242 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    S. Kubis, M. Kutschera, Phys. Lett. B 399, 191 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    G.E. Brown, K. Kubodera, M. Rho, Phys. Lett. B 192, 273 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    Seung Ho Choi, Master’s thesis, Yonsei University, Seoul (1991).Google Scholar
  35. 35.
    R. Thomas, T. Hilger, B. Kampfer, Nucl. Phys. A 795, 19 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    R.L. Jaffe, M. Soldate, Higher Twist In Electroproduction: A Systematic Qcd Analysis, MIT-CTP-931, MIT 1981.Google Scholar
  37. 37.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics and Institute of Physics and Applied PhysicsYonsei UniversitySeoulKorea

Personalised recommendations