Topology change and tensor forces for the EoS of dense baryonic matter

  • Hyun Kyu Lee
  • Mannque RhoEmail author
Part of the following topical collections:
  1. Topical issue on Nuclear Symmetry Energy


When skyrmions representing nucleons are put on crystal lattice and compressed to simulate high density, there is a transition above the normal nuclear matter density (n0) from a matter consisting of skyrmions with integer baryon charge to a state of half-skyrmions with half-integer baryon charge. We exploit this observation in an effective field theory framework to access dense baryonic system. We find that the topology change involved in the transition implies changeover from a Fermi liquid structure to a non-Fermi liquid with the chiral condensate in the “melted-off” nucleon. The ∼ 80% of the nucleon mass that remains “unmelted”, invariant under chiral transformation, points to the possible origin of the (bulk of) proton mass that is not encoded in the standard mechanism of spontaneously broken chiral symmetry. The topology change engenders a drastic modification of the nuclear tensor forces, thereby non-trivially affecting the EoS, in particular, the symmetry energy, for compact star matter. It brings in stiffening of the EoS needed to accommodate a neutron star of ∼ 2 solar mass. The strong effect on the EoS in general and in the tensor force structure in particular will also have impact on processes that could be measured at RIB-type accelerators.


Neutron Star Nuclear Matter Chiral Symmetry Vector Meson Topology Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Lee (Editor), From Nuclei to Stars: Festschrift in Honor of Gerald E. Brown (World Scientific, Singapore, 2011).Google Scholar
  2. 2.
    G.E. Brown, M. Rho, Phys. Lett. B 237, 3 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    T. Skyrme, Nucl. Phys. 9, 615 (1959).CrossRefzbMATHGoogle Scholar
  4. 4.
    B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    T. Matsui, Nucl. Phys. A 370, 365 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    G. Gelmini, B. Ritzi, Phys. Lett. B 357, 431 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    T.-S. Park, D.-P. Min, M. Rho, Nucl. Phys. A 596, 515 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    R. Shankar, Rev. Mod. Phys. 66, 129 (1994).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Polchinski, in Boulder 1992, Proceedings, Recent directions in particle theory, pp. 235-274, and Calif. Univ. Santa Barbara - NSF-ITP-92-132 (92, rec. Nov.) p. 39 (220633) Texas Univ. Austin - UTTG-92-20 (92, rec. Nov.) p. 39.Google Scholar
  10. 10.
    C. Song, G.E. Brown, D.-P. Min, M. Rho, Phys. Rev. C 56, 2244 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    C. Song, Phys. Rep. 347, 289 (2001).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    H.K. Lee, M. Rho, arXiv:1301.0067 [nucl-th].
  14. 14.
    G.E. Brown, M. Rho (Editors), The Multifaceted Skyrmion (World Scientific, Singapore, 2011).Google Scholar
  15. 15.
    A.D. Shapere, F. Wilczek, Z. Xiong, arXiv:1210.3545 [hep-th].
  16. 16.
    M. Harada, K. Yamawaki, Phys. Rep. 381, 1 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005).ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005).ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    D.K. Hong, M. Rho, H.-U. Yee, P. Yi, Phys. Rev. D 76, 061901 (2007).ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    D.K. Hong, M. Rho, H.-U. Yee, P. Yi, JHEP 09, 063 (2007).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    K. Hashimoto, T. Sakai, S. Sugimoto, Prog. Theor. Phys. 120, 1093 (2008).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Y.-L. Ma, Y. Oh, G.-S. Yang, M. Harada, H.K. Lee, B.-Y. Park, M. Rho, Phys. Rev. D 82, 074025 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    Y.-L. Ma, G.-S. Yang, Y. Oh, M. Harada, Phys. Rev. D 87, 034023 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    A.S. Goldhaber, N.S. Manton, Phys. Lett. B 198, 231 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, 2004).Google Scholar
  27. 27.
    B.-Y. Park, V. Vento, in The Multifaceted Skyrmion, edited by G.E. Brown, M. Rho (World Scientific, Singapore, 2011).Google Scholar
  28. 28.
    H. Dong, T.T.S. Kuo, H.K. Lee, R. Machleidt, M. Rho, Phys. Rev. C 87, 054332 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    R.A. Battye, N.S. Manton, P.M. Sutcliffe, in The Multifaceted Skyrmion, edited by G.E. Brown, M. Rho (World Scientific, Singapore, 2011).Google Scholar
  30. 30.
    Y.-L. Ma, M. Harada, H.K. Lee, Y. Oh, B.-Y. Park, M. Rho, Phys.Rev. D 88, 014016 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    W.-G. Paeng, H.K. Lee, M. Rho, C. Sasaki, arXiv:1303.2898 [nucl-th].
  32. 32.
    G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    H.K. Lee, M. Rho, Int. J. Mod. Phys. E 22, 1330005 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    G.E. Brown, R. Machleidt, Phys. Rev. C 50, 1731 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    C. Xu, B.-A. Li, arXiv:1104.2075 [nucl-th].
  36. 36.
    I. Vidana, A. Polls, C. Providencia, Phys. Rev. C 84, 062801 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    H.K. Lee, B.-Y. Park, M. Rho, Phys. Rev. C 83, 025206 (2011) C 84.ADSCrossRefGoogle Scholar
  38. 38.
    R. Ritz et al., Nature 497, 231 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    C.E. DeTar, T. Kunihiro, Phys. Rev. D 39, 2805 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    W.-G. Paeng, H.K. Lee, M. Rho, C. Sasaki, Phys. Rev. D 85, 054022 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    S. Weinberg, Phys. Rev. Lett. 105, 261601 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    G.E. Brown, M. Rho, Phys. Lett. B 82, 177 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    G.E. Brown, M. Rho, V. Vento, Phys. Lett. B 84, 383 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    M. Rho, A.S. Goldhaber, G.E. Brown, Phys. Rev. Lett. 51, 747 (1983).ADSCrossRefGoogle Scholar
  45. 45.
    D.B. Kaplan, arXiv:1306.5818 [nucl-th].
  46. 46.
    N. Tsunoda, T. Otsuka, K. Tsukiyama, M. Hjorth-Jensen, Phys. Rev. C 84, 044322 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsHanyang UniversitySeoulKorea
  2. 2.Institut de Physique ThéoriqueGif-sur-Yvette CédexFrance

Personalised recommendations