MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei

  • A. Obertelli
  • A. Delbart
  • S. Anvar
  • L. Audirac
  • G. Authelet
  • H. Baba
  • B. Bruyneel
  • D. Calvet
  • F. Château
  • A. Corsi
  • P. Doornenbal
  • J. -M. Gheller
  • A. Giganon
  • C. Lahonde-Hamdoun
  • D. Leboeuf
  • D. Loiseau
  • A. Mohamed
  • J. -Ph. Mols
  • H. Otsu
  • C. Péron
  • A. Peyaud
  • E. C. Pollacco
  • G. Prono
  • J. -Y. Rousse
  • C. Santamaria
  • T. Uesaka
Regular Article - Experimental Physics

Abstract

MINOS is a new apparatus dedicated to in-beam nuclear structure experiments with low-intensity exotic beams in inverse kinematics at intermediate energies above 150MeV/nucleon. The device is composed of a thick liquid-hydrogen target coupled to a compact time projection chamber (TPC) serving as a vertex tracker. Either used for in-beam gamma spectroscopy of bound excited states or invariant-mass spectroscopy of unbound states, MINOS aims at improving the luminosity by a very significant factor compared to standard solid-target material experiments while improving experimental resolutions.

References

  1. 1.
    C. Detraz et al., Phys. Rev. C 19, 164 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. Gade et al., Phys. Rev. Lett. 99, 072502 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    G. Hagen et al., Phys. Rev. Lett. 109, 162503 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    D. Steppenbeck et al., Nature 502, 207 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    T. Otsuka et al., Phys. Rev. Lett. 105, 212502 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Dobaczewski et al., Phys. Rev. Lett. 72, 981 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    P. Doornenbal et al., Phys. Rev. Lett. 103, 032501 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    A. Obertelli, Proceedings in French-Japanese Symposium on Nuclear Structure Problems, edited by H. Otsu, T. Motobayashi, P. Roussel-Chomaz, T. Otsuka (World Scientific, 2012).Google Scholar
  13. 13.
    A. Obertelli, T. Uesaka, Eur. Phys. J. A 47, 105 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    C. Demonchy et al., Nucl. Instrum. Methods Phys. Res. A 573, 145 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    C. Demonchy et al., Nucl. Instrum. Methods Phys. Res. A 583, 341 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    A. Boudard et al., Phys. Rev. C 66, 044615 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    A. Boudard et al., Phys. Rev. C 87, 014606 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    C. Louchart et al., Phys. Rev. C 83, 011601(R) (2011).ADSCrossRefGoogle Scholar
  20. 20.
    L. Audirac et al., Phys. Rev. C 88, 041602(R) (2013).ADSCrossRefGoogle Scholar
  21. 21.
    N.S. Chant, code THREEDEE, University of Maryland, unpublished (1998).Google Scholar
  22. 22.
    D.C. Arogancia et al., Nucl. Instrum. Methods Phys. Res. A 602, 403 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    S.F. Biagi, Nucl. Instrum. Methods Phys. Res. A 241, 234 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    S. Takeuchi, in RIKEN Accelerator Progress Report (RIKEN, 2005) col. 36, p. 148.Google Scholar
  25. 25.
    T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).CrossRefGoogle Scholar
  27. 27.
    C. Louchart et al., Nucl. Instrum. Methods Phys. Res. A 736, 81 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    A. Gillibert et al., Eur. Phys. J. A 49, 155 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    ASME Boiler and pressure Vessel, http://go.asme.org/bpvc13.
  30. 30.
    S.P. Timoshenko, J.M. Gere, Theory of elastic stability (Mc. Graw-Hill, 1961).Google Scholar
  31. 31.
    I. Giomataris et al., Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    I. Giomataris et al., Nucl. Instrum. Methods Phys. Res. A 560, 405 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    L. Fabbietti et al., Nucl. Instrum. Methods Phys. Res. A 628, 204 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    G. Charpak, I. Giomataris, Ph. Rebourgeard, J.P. Robert, Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    P. Colas, I. Giommataris, V. Lepeltier, Nucl. Instrum. Methods Phys. Res. A 534, 226 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    A. Delbart et al., Nucl. Instrum. Methods Phys. Res. A 623, 105 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    N. Abgrall et al., Nucl. Instrum. Methods Phys. Res. A 637, 25 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    CLAS12 Technical Design Report, v5.1, Jefferson Lab (2008).Google Scholar
  39. 39.
    G. Charles, PhD thesis at CEA Saclay, Paris XI university (2013).Google Scholar
  40. 40.
    S. Anvar, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2011) pp. 745--749.Google Scholar
  41. 41.
    P. Baron et al., IEEE Trans. Nucl. Sci. 55, 1744 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    S. Procureur, Mod. Phys. Lett. A 28, 1340024 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    C. Glattfelder, Mars MX2 User Manual, Enclustra Gmbh (online), available at: http://www.enclustra.com.
  44. 44.
    D. Calvet, paper presented at IEEE NSS/MIC 2013, Seoul, Korea, October 27th-November 2nd 2013.Google Scholar
  45. 45.
    S. Anvar, in IEEE Nuclear Science Symposium Conference Record, NSS '08 (IEEE, 2008) pp. 3558--3561.Google Scholar
  46. 46.
    M. Henning, IEEE Internet Comput. 8, 66 (2004).CrossRefGoogle Scholar
  47. 47.
    F. Château, S. Anvar, in Proceedings of the 15th IEEE-NPSS RealTime Conference, 2007 (IEEE, 2007) pp. 1-6.Google Scholar
  48. 48.
    H. Baba, in IEEE Nuclear Science Symposium Conference Record, NSS '08 (IEEE, 2008) pp. 1384--1386.Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Obertelli
    • 1
  • A. Delbart
    • 1
  • S. Anvar
    • 1
  • L. Audirac
    • 1
  • G. Authelet
    • 1
  • H. Baba
    • 2
  • B. Bruyneel
    • 1
  • D. Calvet
    • 1
  • F. Château
    • 1
  • A. Corsi
    • 1
  • P. Doornenbal
    • 2
  • J. -M. Gheller
    • 1
  • A. Giganon
    • 1
  • C. Lahonde-Hamdoun
    • 1
  • D. Leboeuf
    • 1
  • D. Loiseau
    • 1
  • A. Mohamed
    • 1
  • J. -Ph. Mols
    • 1
  • H. Otsu
    • 2
  • C. Péron
    • 1
  • A. Peyaud
    • 1
  • E. C. Pollacco
    • 1
  • G. Prono
    • 1
  • J. -Y. Rousse
    • 1
  • C. Santamaria
    • 1
  • T. Uesaka
    • 2
  1. 1.CEA, Centre de Saclay, IRFUGif-sur-YvetteFrance
  2. 2.RIKEN Nishina CenterWako, SaitamaJapan

Personalised recommendations