Explosive nucleosynthesis at strong magnetic field

Regular Article - Theoretical Physics

Abstract

The effect of a strong magnetic field on the synthesis of chemical elements is considered at conditions of nuclear statistical equilibrium. The possibility to employ the produced radionuclides to probe the transient ultra-magnetized astrophysical plasma in supernovae and near neutron stars is analyzed. For iron group nuclides the magnetic modification of the nuclear structure shifts a maximum of nucleosynthesis products towards smaller mass numbers approaching titanium. Signals of 44Ti radioactive decay in the gamma-spectra of the supernova remnant Cassiopeia A are revealed from the Integral IBIS/ISGRI observational data. The determined gamma-ray fluxes for 44Sc* lines with energies 67.9keV and 78.4keV correspond to the initial 44Ti volume (3.3−0.7+0.9) × 10−4 solar masses that corroborates the magnetic enhancement of isotope production at a field constrained on conditions of supernova explosion.

References

  1. 1.
    S.E. Woosley, A. Heger, T.A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    G.S. Bisnovatyi-Kogan, Stellar Physics (Springer-Verlag, Berlin, 2011).Google Scholar
  3. 3.
    V.N. Kondratyev, I.M. Kadenko, Mon. Not. R. Astron. Soc. 359, 927 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    V.N. Kondratyev, Phys. At. Nucl. 75, 1442 (2012).CrossRefGoogle Scholar
  5. 5.
    V.N. Kondratyev, EPJ Web of Conferences 38, 17008 (2012).CrossRefGoogle Scholar
  6. 6.
    V.N. Kondratyev, Bull. Univ. Kiev 3, 31 (2010).Google Scholar
  7. 7.
    S. Akiyama, C.J. Wheeler, D.L. Meier, I. Lichtenstadt, Astrophys. J. 584, 954 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Wheeler, D.L. Meier, J.R. Wilson, Astrophys. J. 568, 807 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    M. Obergaulinger, M.A. Aloy, E. Müller, Astron. Astrophys. 450, 1107 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    S.G. Moiseenko, G.S. Bisnovatyi-Kogan, N.V. Ardeljan, Mon. Not. R. Astron. Soc. 370, 501 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. Burrows, L. Dessart, E. Livne, C.D. Ott, J. Murphy, Astrophys. J. 664, 416 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    T. Takiwaki, K. Kotake, K. Sato, Astrophys. J. 691, 1360 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    E.P. Mazets, S.V. Golenetskii, V.N. Il'inskii et al., Nature 282, 587 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    V.N. Kondratyev, Phys. Rev. Lett. 88, 221101 (2002) and JAERI-Research, Vol. 2001-057.ADSCrossRefGoogle Scholar
  15. 15.
    V.N. Kondratyev, J. Nucl. Sci. Tech. 1 Suppl. 2, 550 (2002).Google Scholar
  16. 16.
    V.N. Kondratyev, J. Nucl. Radiochem. Sci. 3, 205 (2002).CrossRefGoogle Scholar
  17. 17.
    V.N. Kondratyev, Phys. Rev. C 69, 038801 (2004) and JAERI-Research, Vol. 2002-10.ADSCrossRefGoogle Scholar
  18. 18.
    D. Pena Arteaga, M. Grasso, E. Khan, P. Ring, Phys. Rev. C 84, 045806 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin, NY, 1969).Google Scholar
  20. 20.
    P. Moeller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    V.N. Kondratyev, H.O. Lutz, Z. Phys. D 40, 210 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    V.N. Kondratyev, H.O. Lutz, S. Ayik, J. Chem. Phys. 106, 7766 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    N.B. Suntzeff, Astrophys. J. 384, L33 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    D.D.Clayton et al., Astrophys. J. 399, L141 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    N.N. Chugai, R.A. Chevalier, R.P. Kirshner, P.M. Challis, Astrophys. J. 483, 925 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    A. Jerkstrand, C. Fransson, C. Kozma, Astron. Astrophys. 530, A45 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    J. Larsson et al., Nature 474, 484 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    L.-S. The et al., Astron. Astrophys. 450, 1037 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    I. Ahmad et al., Phys. Rev. C 74, 065803 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler, Nature 490, 373 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    A.F. Iyudin et al., Astron. Astrophys. 284, L1 (1994).ADSGoogle Scholar
  32. 32.
    J. Vink et al., Astrophys. J. 560, L79 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    M. Renaud et al., New Astron. Rev. 50, 540 (2006).ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    F. Lebrun et al., Astron. Astrophys. 411, L141 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    V.N. Kondratyev, in Proceedings of the International Conference on Isomers INIR-2011 (JINR, E15,18-2012-15, Dubna, 2012) p. 91.Google Scholar
  36. 36.
  37. 37.
    J.B. Elliott et al., Phys. Rev. C 87, 054622 (2013).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physics DepartmentTaras Shevchenko National University of KievBielefeldUkraine
  2. 2.Physics DepartmentBielefeld UniversityBielefeldGermany

Personalised recommendations