Advertisement

Quasi-free photoproduction of η-mesons off 3He nuclei

  • Crystal Ball/TAPS experiment at MAMI, the A2 Collaboration
  • L. Witthauer
  • D. Werthmüller
  • I. Keshelashvili
  • P. Aguar-Bartolomé
  • J. Ahrens
  • J. R. M. Annand
  • H. J. Arends
  • K. Bantawa
  • R. Beck
  • V. Bekrenev
  • A. Braghieri
  • D. Branford
  • W. J. Briscoe
  • J. Brudvik
  • S. Cherepnya
  • B. Demissie
  • M. Dieterle
  • E. J. Downie
  • P. Drexler
  • L. V. Fil’kov
  • A. Fix
  • D. I. Glazier
  • D. Hamilton
  • E. Heid
  • D. Hornidge
  • D. Howdle
  • G. M. Huber
  • I. Jaegle
  • O. Jahn
  • T. C. Jude
  • A. Käser
  • V. L. Kashevarov
  • R. Kondratiev
  • M. Korolija
  • S. P. Kruglov
  • B. KruscheEmail author
  • A. Kulbardis
  • V. Lisin
  • K. Livingston
  • I. J. D. MacGregor
  • Y. Maghrbi
  • J. Mancell
  • D. M. Manley
  • Z. Marinides
  • M. Martinez
  • J. C. McGeorge
  • E. McNicoll
  • V. Metag
  • D. G. Middleton
  • A. Mushkarenkov
  • B. M. K. Nefkens
  • A. Nikolaev
  • R. Novotny
  • M. Oberle
  • M. Ostrick
  • B. Oussena
  • P. Pedroni
  • F. Pheron
  • A. Polonski
  • S. Prakhov
  • J. Robinson
  • G. Rosner
  • M. Rost
  • T. Rostomyan
  • S. Schumann
  • M. H. Sikora
  • D. Sober
  • A. Starostin
  • I. Supek
  • M. Thiel
  • A. Thomas
  • M. Unverzagt
  • D. P. Watts
Open Access
Regular Article - Experimental Physics

Abstract

Quasi-free photoproduction of η-mesons has been measured off nucleons bound in 3He nuclei for incident photon energies from the threshold region up to 1.4 GeV. The experiment was performed at the tagged photon facility of the Mainz MAMI accelerator with an almost 4π covering electromagnetic calorimeter, combining the TAPS and Crystal Ball detectors. The η-mesons were detected in coincidence with the recoil nucleons. This allowed a comparison of the production cross section off quasi-free protons and quasi-free neutrons and a full kinematic reconstruction of the final state, eliminating effects from nuclear Fermi motion. In the S11(1535) resonance peak, the data agree with the neutron/proton cross section ratio extracted from measurements with deuteron targets. More importantly, the prominent structure observed in photoproduction off quasi-free neutrons bound in the deuteron is also clearly observed. Its parameters (width, strength) are consistent with the expectations from the deuteron results. On an absolute scale the cross sections for both quasi-free protons and neutrons are suppressed with respect to the deuteron target pointing to significant nuclear final-state interaction effects.

References

  1. 1.
    B. Krusche, Eur. Phys. J. ST 198, 199 (2011).CrossRefGoogle Scholar
  2. 2.
    J. Ajaka et al., Phys. Lett. B 651, 108 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. Fantini et al., Phys. Rev. C 78, 015203 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    R. Di Salvo et al., Eur. Phys. J. A 42, 151 (2009).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    I. Jaegle et al., Eur. Phys. J. A 47, 11 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    I. Jaegle et al., Eur. Phys. J. A 47, 89 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Oberle et al., Phys. Lett. B 721, 237 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    P. Aguar Bartolome et al., Phys. Lett. B 732, 71 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    I. Jaegle et al., Phys. Rev. Lett. 100, 252002 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    D. Werthmüller et al., Phys. Rev. Lett. 111, 232001 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    F. Pheron et al., Phys. Lett. B 709, 21 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Armstrong et al., Phys. Rev. D 60, 052004 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    R. Thompson et al., Phys. Rev. Lett. 86, 1702 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    F. Renard et al., Phys. Lett. B 528, 215 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    M. Dugger et al., Phys. Rev. Lett. 89, 222002 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    V. Crede et al., Phys. Rev. Lett. 94, 012004 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    O. Bartalini et al., Eur. Phys. J. A 33, 169 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    O. Bartholomy et al., Eur. Phys. J. A 33, 133 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    H. Denizli et al., Phys. Rev. C 76, 015204 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    V. Crede et al., Phys. Rev. C 80, 055202 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    M. Williams et al., Phys. Rev. C 80, 045213 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    M. Sumihama et al., Phys. Rev. C 80, 052201(R) (2009).ADSCrossRefGoogle Scholar
  27. 27.
    E.F. McNicoll et al., Phys. Rev. C 82, 035208 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    B. Krusche et al., Phys. Lett. B 397, 171 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    J. Ajaka et al., Phys. Rev. Lett. 81, 1797 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    D. Elsner et al., Eur. Phys. J. A 33, 147 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    W.-T. Chiang et al., Nucl. Phys. A 700, 429 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    J. Beringer et al., Phys. Rev. D 86, 010001 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Anisovich et al., Eur. Phys. J. A 49, 67 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    V.A. Anisovich et al., Eur. Phys. J. A 25, 427 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    B. Krusche et al., Phys. Lett. B 358, 40 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    P. Hoffmann-Rothe et al., Phys. Rev. Lett. 78, 4697 (1997).ADSCrossRefGoogle Scholar
  37. 37.
    J. Weiss et al., Eur. Phys. J. A 16, 275 (2003).ADSCrossRefGoogle Scholar
  38. 38.
    J. Weiss et al., Eur. Phys. J. A 11, 371 (2001).ADSCrossRefGoogle Scholar
  39. 39.
    M. Pfeiffer et al., Phys. Rev. Lett. 92, 252001 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    V. Hejny et al., Eur. Phys. J. A 6, 83 (1999).ADSGoogle Scholar
  41. 41.
    V. Hejny et al., Eur. Phys. J. A 13, 493 (2002).ADSGoogle Scholar
  42. 42.
    B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003).ADSCrossRefGoogle Scholar
  43. 43.
    V. Shklyar, H. Lenske, U. Mosel, Phys. Lett. B 650, 172 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    R. Shyam, O. Scholten, Phys. Rev. C 78, 065201 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    M. Döring, K. Nakayama, Phys. Lett. B 683, 145 (2010).ADSCrossRefGoogle Scholar
  46. 46.
    V.A. Anisovich et al., Eur. Phys. J. A 41, 13 (2009).ADSCrossRefGoogle Scholar
  47. 47.
    R.A. Arndt et al., Phys Rev. C 69, 035208 (2004).ADSCrossRefGoogle Scholar
  48. 48.
    A. Fix, L. Tiator, M.V. Polyakov, Eur. Phys. J. A 32, 311 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    M. Shrestha, D.M. Manley, Phys. Rev. C 86, 055203 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    H. Herminghaus et al., IEEE Trans. Nucl. Sci. 30, 3274 (1983).ADSCrossRefGoogle Scholar
  51. 51.
    K.-H. Kaiser et al., Nucl. Instrum. Methods A 593, 159 (2008).ADSCrossRefGoogle Scholar
  52. 52.
    I. Anthony et al., Nucl. Instrum. Methods A 301, 230 (1991).ADSCrossRefGoogle Scholar
  53. 53.
    S.J. Hall, G.J. Miller, R. Beck, P. Jennewein, Nucl. Instrum. Methods A 368, 698 (1996).ADSCrossRefGoogle Scholar
  54. 54.
    J.C. McGeorge et al., Eur. Phys. J. A 37, 129 (2008).ADSCrossRefGoogle Scholar
  55. 55.
    A. Starostin et al., Phys. Rev. C 64, 055205 (2001).ADSCrossRefGoogle Scholar
  56. 56.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991).ADSCrossRefGoogle Scholar
  57. 57.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994).ADSCrossRefGoogle Scholar
  58. 58.
    D. Watts, in Calorimetry in Particle Physics, Proceedings of the 11th International Conference, Perugia, Italy 2004, edited by C. Cecchi, P. Cenci, P. Lubrano, M. Pepe (World Scientific, Singapore, 2005) p. 560.Google Scholar
  59. 59.
    S. Schumann et al., Eur. Phys. J. A 43, 269 (2010).ADSCrossRefGoogle Scholar
  60. 60.
    F. Zehr et al., Eur. Phys. J. A 48, 98 (2012).ADSCrossRefGoogle Scholar
  61. 61.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).ADSCrossRefGoogle Scholar
  62. 62.
    Y. Magrhbi et al., Phys. Lett. B 722, 69 (2013).ADSCrossRefGoogle Scholar
  63. 63.
    J. Arrington et al., Prog. Part. Nucl. Phys. 67, 898 (2012).ADSCrossRefGoogle Scholar
  64. 64.
    A. Nogga et al., Phys. Rev. C 67, 034004 (2003).ADSCrossRefGoogle Scholar
  65. 65.
    M. Röbig-Landau et al., Phys. Lett. B 373, 45 (1996).ADSCrossRefGoogle Scholar
  66. 66.
    T. Mertens et al., Eur. Phys. J. A 38, 195 (2008).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Crystal Ball/TAPS experiment at MAMI, the A2 Collaboration
  • L. Witthauer
    • 1
  • D. Werthmüller
    • 1
  • I. Keshelashvili
    • 1
  • P. Aguar-Bartolomé
    • 2
  • J. Ahrens
    • 2
  • J. R. M. Annand
    • 3
  • H. J. Arends
    • 2
  • K. Bantawa
    • 4
  • R. Beck
    • 2
    • 5
  • V. Bekrenev
    • 6
  • A. Braghieri
    • 7
  • D. Branford
    • 8
  • W. J. Briscoe
    • 9
  • J. Brudvik
    • 10
  • S. Cherepnya
    • 11
  • B. Demissie
    • 9
  • M. Dieterle
    • 1
  • E. J. Downie
    • 2
    • 3
    • 9
  • P. Drexler
    • 12
  • L. V. Fil’kov
    • 11
  • A. Fix
    • 13
  • D. I. Glazier
    • 8
  • D. Hamilton
    • 3
  • E. Heid
    • 2
  • D. Hornidge
    • 14
  • D. Howdle
    • 3
  • G. M. Huber
    • 15
  • I. Jaegle
    • 1
  • O. Jahn
    • 2
  • T. C. Jude
    • 8
  • A. Käser
    • 1
  • V. L. Kashevarov
    • 2
    • 11
  • R. Kondratiev
    • 16
  • M. Korolija
    • 17
  • S. P. Kruglov
    • 6
  • B. Krusche
    • 1
    Email author
  • A. Kulbardis
    • 6
  • V. Lisin
    • 16
  • K. Livingston
    • 3
  • I. J. D. MacGregor
    • 3
  • Y. Maghrbi
    • 1
  • J. Mancell
    • 3
  • D. M. Manley
    • 4
  • Z. Marinides
    • 9
  • M. Martinez
    • 2
  • J. C. McGeorge
    • 3
  • E. McNicoll
    • 3
  • V. Metag
    • 12
  • D. G. Middleton
    • 14
  • A. Mushkarenkov
    • 7
  • B. M. K. Nefkens
    • 10
  • A. Nikolaev
    • 2
    • 5
  • R. Novotny
    • 12
  • M. Oberle
    • 1
  • M. Ostrick
    • 2
  • B. Oussena
    • 2
    • 9
  • P. Pedroni
    • 7
  • F. Pheron
    • 1
  • A. Polonski
    • 16
  • S. Prakhov
    • 2
    • 9
    • 10
  • J. Robinson
    • 3
  • G. Rosner
    • 3
  • M. Rost
    • 2
  • T. Rostomyan
    • 1
  • S. Schumann
    • 2
    • 5
  • M. H. Sikora
    • 8
  • D. Sober
    • 18
  • A. Starostin
    • 10
  • I. Supek
    • 17
  • M. Thiel
    • 2
    • 12
  • A. Thomas
    • 2
  • M. Unverzagt
    • 2
    • 5
  • D. P. Watts
    • 8
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.Institut für KernphysikUniversity of MainzMainzGermany
  3. 3.School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  4. 4.Kent State UniversityKentUSA
  5. 5.Helmholtz-Institut für Strahlen- und KernphysikUniversity of BonnBonnGermany
  6. 6.Petersburg Nuclear Physics InstituteGatchinaRussia
  7. 7.INFNPaviaItaly
  8. 8.School of PhysicsUniversity of EdinburghEdinburghUK
  9. 9.Institute for Nuclear StudiesThe George Washington UniversityWashington, DCUSA
  10. 10.University of California Los AngelesLos AngelesUSA
  11. 11.Lebedev Physical InstituteMoscowRussia
  12. 12.II. Physikalisches InstitutUniversity of GiessenGiessenGermany
  13. 13.Laboratory of Mathematical PhysicsTomsk Polytechnic UniversityTomskRussia
  14. 14.Mount Allison UniversitySackvilleCanada
  15. 15.University of ReginaReginaCanada
  16. 16.Institute for Nuclear ResearchMoscowRussia
  17. 17.Rudjer Boskovic InstituteZagrebCroatia
  18. 18.The Catholic University of AmericaWashingtonUSA

Personalised recommendations