Design studies of the PWO Forward End-cap calorimeter for P̄ANDA

  • P̄ANDA Collaboration
  • H. Moeini
  • M. Al-Turany
  • M. Babai
  • A. Biegun
  • O. Bondarenko
  • K. Götzen
  • M. Kavatsyuk
  • M. F. Lindemulder
  • H. Löhner
  • D. Melnychuk
  • J. G. Messchendorp
  • H. A. J. Smit
  • S. Spataro
  • R. Veenstra
Open Access
Regular Article - Experimental Physics

Abstract

The P̄ANDA detection system at FAIR, Germany, is designed to study antiproton-proton annihilations, in order to investigate, among others, the realm of charm-meson states and glueballs, which has still much to reveal. The yet unknown properties of this field are to be unraveled through studying QCD phenomena in the non-perturbative regime. The multipurpose P̄ANDA detector will be capable of tracking, calorimetry, and particle identification, and is planned to run at high luminosities providing average reaction rates up to 2 · 107 interactions/s. The envisaged physics program requires measurements of photons and charged particles with excellent energy, position, and time resolutions. The electromagnetic calorimeter (EMC) will serve as one of the basic components of the detector setup and comprises cooled lead-tungstate (PbWO4) crystals. This paper presents the mechanical design of the Forward End-cap calorimeter and analyzes the response of the Forward End-cap calorimeter in conjunction with the full EMC and the complete P̄ANDA detector. The simulation studies are focused on the performance of the planned EMC with respect to the energy and spatial resolution of the reconstructed photons. Results of the Monte Carlo simulations, excluding very low-energy photons, have been validated by data obtained from a prototype calorimeter and shown to fulfil the requirements imposed by the P̄ANDA physics program.

References

  1. 1.
    The P̄ANDA Collaboration (W. Erni), Physics Performance Report for P̄ANDA: Strong Interaction Studies with Antiprotons, arXiv:0903.3905v1 [hep-ex] (2009).
  2. 2.
    A. Lehrach et al., Nucl. Instrum. Methods A 561, 289 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    The P̄ANDA Collaboration (W. Erni), Technical Design Report for P̄ANDA Electromagnetic Calorimeter (EMC), arXiv:0810.1216v1 [physics.ins-det] (2008).
  4. 4.
    R. Novotny et al., IEEE Trans. Nucl. Sci. 47, 1499 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    The CMS Collaboration, CMS Technical Proposal, CERN-LHCC-94-38, LHCC-P-1 (1994) http://cds.cern.ch/record/290969/files/cer-0212026.htm.
  6. 6.
    M. Kavatsyuk et al., Nucl. Instrum. Methods Phys. Res. A 648, 77 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    The CMS Collaboration, CMS Physics Technical Design Report, CERN/LHCC (2006).Google Scholar
  8. 8.
    S. Spataro et al., J. Phys.: Conf. Ser. 331, 032031 (2011).ADSGoogle Scholar
  9. 9.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997).ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).ADSCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Unigraphics UGS NX7.5 CAD/CAM/CAE design software package.Google Scholar
  14. 14.
    D.J. Lange, Nucl. Instrum. Methods Phys. Res. A 462, 152 (2001).ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    T.C. Awes et al., Nucl. Instrum. Methods Phys. Res. A 311, 130 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    B. Aubert et al., Nucl. Instrum. Methods Phys. Res. A 479, 1 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012) http://pdg.lbl.gov/.ADSCrossRefGoogle Scholar
  19. 19.
    S. Grape, Licenciate Thesis, Uppsala University (2008) arXiv:0805.0950.
  20. 20.
    H. Löhner et al., IEEE Trans. Nucl. Sci. 59, 2237 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    D. Bremer, Poster presented at the 12th International Conference on Inorganic Scintillators and their Applications, SCINT 2013, April 15--19, 2013, Shanghai, China and D. Bremer, PhD thesis, University of Giessen, Germany (2013) in publication.Google Scholar
  22. 22.
    M. Ablikim et al., Phys. Rev. D 86, 092009 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    M.G. Olsson, Casimir J. Suchyta, III, Phys. Rev. D 34, 2043 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    M. Ablikim et al., Nucl. Instrum. Methods A 614, 345 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Kubota et al., Nucl. Instrum. Methods Phys. Res. A 320, 66 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    A. Abashian et al., Nucl. Instrum. Methods Phys. Res. A 479, 117 (2002).ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • P̄ANDA Collaboration
  • H. Moeini
    • 1
  • M. Al-Turany
    • 2
  • M. Babai
    • 1
  • A. Biegun
    • 1
  • O. Bondarenko
    • 1
  • K. Götzen
    • 2
  • M. Kavatsyuk
    • 1
  • M. F. Lindemulder
    • 1
  • H. Löhner
    • 1
  • D. Melnychuk
    • 3
  • J. G. Messchendorp
    • 1
  • H. A. J. Smit
    • 1
  • S. Spataro
    • 4
  • R. Veenstra
    • 1
  1. 1.Kernfysisch Versneller Instituut (KVI)University of GroningenGroningenThe Netherlands
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.National Centre for Nuclear ResearchWarsawPoland
  4. 4.Dipartimento di FisicaUniversità di Torino and INFNTorinoItaly

Personalised recommendations