Controlling complex Langevin dynamics at finite density

  • Gert Aarts
  • Lorenzo Bongiovanni
  • Erhard Seiler
  • Dénes Sexty
  • Ion-Olimpiu Stamatescu
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Topical issue on lattice field theory methods in hadron and nuclear physics

Abstract

At nonzero chemical potential the numerical sign problem in lattice field theory limits the use of standard algorithms based on importance sampling. Complex Langevin dynamics provides a possible solution, but it has to be applied with care. In this review, we first summarise our current understanding of the approach, combining analytical and numerical insight. In the second part we study SL(C, ℂ) gauge cooling, which was introduced recently as a tool to control complex Langevin dynamics in nonabelian gauge theories. We present new results in Polyakov chain models and in QCD with heavy quarks and compare various adaptive cooling implementations.

References

  1. 1.
    P. de Forcrand, PoS LAT2009, 010 (2009) arXiv:1005.0539 [hep-lat].Google Scholar
  2. 2.
    G. Aarts, PoS LATTICE2012, 017 (2012) arXiv:1302.3028 [hep-lat].Google Scholar
  3. 3.
    G. Parisi, Phys. Lett. B 131, 393 (1983).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.R. Klauder, Stochastic quantization, in Recent Developments in High-Energy Physics, edited by H. Mitter, C.B. Lang (Springer-Verlag, Wien, 1983) p. 351.Google Scholar
  5. 5.
    J.R. Klauder, J. Phys. A: Math. Gen. 16, L317 (1983).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J.R. Klauder, Phys. Rev. A 29, 2036 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    G. Aarts, I.-O. Stamatescu, JHEP 09, 018 (2008) arXiv:0807.1597 [hep-lat].MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    G. Aarts, Phys. Rev. Lett. 102, 131601 (2009) arXiv:0810.2089 [hep-lat].ADSCrossRefGoogle Scholar
  9. 9.
    G. Aarts, K. Splittorff, JHEP 08, 017 (2010) arXiv:1006.0332 [hep-lat].ADSCrossRefGoogle Scholar
  10. 10.
    G. Aarts, F.A. James, JHEP 01, 118 (2012) arXiv:1112.4655 [hep-lat].ADSCrossRefGoogle Scholar
  11. 11.
    J. Ambjorn, S.K. Yang, Phys. Lett. B 165, 140 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    J. Ambjorn, M. Flensburg, C. Peterson, Nucl. Phys. B 275, 375 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    J. Berges, S. Borsanyi, D. Sexty, I.O. Stamatescu, Phys. Rev. D 75, 045007 (2007) hep-lat/0609058.ADSCrossRefGoogle Scholar
  14. 14.
    J. Berges, D. Sexty, Nucl. Phys. B 799, 306 (2008) arXiv:0708.0779 [hep-lat].ADSCrossRefMATHGoogle Scholar
  15. 15.
    G. Aarts, E. Seiler, I.-O. Stamatescu, Phys. Rev. D 81, 054508 (2010) arXiv:0912.3360 [hep-lat].ADSCrossRefGoogle Scholar
  16. 16.
    G. Aarts, F.A. James, JHEP 08, 020 (2010) arXiv:1005.3468 [hep-lat].MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Eur. Phys. J. C 71, 1756 (2011) arXiv:1101.3270 [hep-lat].ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Pawlowski, C. Zielinski, Phys. Rev. D 87, 094503 (2013) arXiv:1302.1622 [hep-lat].ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Pawlowski, C. Zielinski, Phys. Rev. D 87, 094509 (2013) arXiv:1302.2249 [hep-lat].ADSCrossRefGoogle Scholar
  20. 20.
    E. Seiler, D. Sexty, I.-O. Stamatescu, Phys. Lett. B 723, 213 (2013) arXiv:1211.3709 [hep-lat].ADSCrossRefGoogle Scholar
  21. 21.
    P.H. Damgaard, H. Huffel, Phys. Rep. 152, 227 (1987).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New York, 1978).Google Scholar
  23. 23.
    G. Aarts, JHEP 05, 052 (2009) arXiv:0902.4686 [hep-lat].ADSCrossRefGoogle Scholar
  24. 24.
    A. Duncan, M. Niedermaier, arXiv:1205.0307 [quant-ph].
  25. 25.
    G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky, K.G. Wilson, Phys. Rev. D 32, 2736 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Phys. Lett. B 687, 154 (2010) arXiv:0912.0617 [hep-lat].ADSCrossRefGoogle Scholar
  27. 27.
    Chien-Cheng Chang, Math. Comput. 49, 523 (1987).CrossRefMATHGoogle Scholar
  28. 28.
    W.P. Petersen, hep-lat/9602008.Google Scholar
  29. 29.
    G. Aarts, F.A. James, J.M. Pawlowski, E. Seiler, D. Sexty, I.-O. Stamatescu, JHEP 03, 073 (2013) arXiv:1212.5231 [hep-lat].MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    D. Banerjee, S. Chandrasekharan, Phys. Rev. D 81, 125007 (2010) arXiv:1001.3648 [hep-lat].ADSCrossRefGoogle Scholar
  31. 31.
    C. Gattringer, Nucl. Phys. B 850, 242 (2011) arXiv:1104.2503 [hep-lat].ADSCrossRefMATHGoogle Scholar
  32. 32.
    Y.D. Mercado, C. Gattringer, Nucl. Phys. B 862, 737 (2012) arXiv:1204.6074 [hep-lat].ADSCrossRefMATHGoogle Scholar
  33. 33.
    F. Karsch, H.W. Wyld, Phys. Rev. Lett. 55, 2242 (1985).ADSCrossRefGoogle Scholar
  34. 34.
    N. Bilic, H. Gausterer, S. Sanielevici, Phys. Rev. D 37, 3684 (1988).ADSCrossRefGoogle Scholar
  35. 35.
    J. Greensite, K. Splittorff, Phys. Rev. D 86, 074501 (2012) arXiv:1206.1159 [hep-lat].ADSCrossRefGoogle Scholar
  36. 36.
    M. Fromm, J. Langelage, S. Lottini, O. Philipsen, JHEP 01, 042 (2012) arXiv:1111.4953 [hep-lat].ADSCrossRefGoogle Scholar
  37. 37.
    M. Fromm, J. Langelage, S. Lottini, M. Neuman, O. Philipsen, Phys. Rev. Lett. 110, 122001 (2013) arXiv:1207.3005 [hep-lat].ADSCrossRefGoogle Scholar
  38. 38.
    K. Langfeld, Phys. Rev. D 87, 114504 (2013) arXiv:1302.1908 [hep-lat].ADSCrossRefGoogle Scholar
  39. 39.
    M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B 63, 214503 (2001) cond-mat/0010360.ADSCrossRefGoogle Scholar
  40. 40.
    I. Bender, T. Hashimoto, F. Karsch, V. Linke, A. Nakamura, M. Plewnia, I.O. Stamatescu, W. Wetzel, Nucl. Phys. Proc. Suppl. 26, 323 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    R. De Pietri, A. Feo, E. Seiler, I.-O. Stamatescu, Phys. Rev. D 76, 114501 (2007) arXiv:0705.3420 [hep-lat].ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gert Aarts
    • 1
  • Lorenzo Bongiovanni
    • 1
  • Erhard Seiler
    • 2
  • Dénes Sexty
    • 3
  • Ion-Olimpiu Stamatescu
    • 3
    • 4
  1. 1.Department of Physics, College of ScienceSwansea UniversitySwanseaUK
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  3. 3.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  4. 4.FESTHeidelbergGermany

Personalised recommendations