Advertisement

Dependence of the triple-alpha process on the fundamental constants of nature

  • Evgeny EpelbaumEmail author
  • Hermann Krebs
  • Timo A. Lähde
  • Dean Lee
  • Ulf-G. Meißner
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Topical issue on lattice field theory methods in hadron and nuclear physics

Abstract

We present an ab initio calculation of the quark mass dependence of the ground state energies of 4He , 8Be and 12C , and of the energy of the Hoyle state in 12C . These investigations are performed within the framework of lattice chiral Effective Field Theory. We address the sensitivity of the production rate of carbon and oxygen in red giant stars to the fundamental constants of nature by considering the impact of variations in the light quark masses and the electromagnetic fine-structure constant on the reaction rate of the triple-alpha process. As carbon and oxygen are essential to life as we know it, we also discuss the implications of our findings for an anthropic view of the Universe. We find strong evidence that the physics of the triple-alpha process is driven by alpha clustering, and that shifts in the fundamental parameters at the ≃ 2–3% level are unlikely to be detrimental to the development of life. Tolerance against much larger changes cannot be ruled out at present, given the relatively limited knowledge of the quark mass dependence of the two-nucleon S -wave scattering parameters. Lattice QCD is expected to provide refined estimates of the scattering parameters in the future.

Keywords

Pion Mass Chiral Expansion Light Quark Masse Anthropic Principle Quark Mass Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954).ADSCrossRefGoogle Scholar
  2. 2.
    D.N.F. Dunbar, R.E. Pixley, W.A. Wenzel, W. Whaling, Phys. Rev. 92, 649 (1953).ADSCrossRefGoogle Scholar
  3. 3.
    C.W. Cook, W.A. Fowler, C.C. Lauritsen, T. Lauritsen, Phys. Rev. 107, 508 (1957).ADSCrossRefGoogle Scholar
  4. 4.
    A. Linde, The inflationary multiverse, in Universe or multiverse?, edited by B. Carr (Cambridge University Press, Cambridge, England, 2007).Google Scholar
  5. 5.
    B. Carter, Large number coincidences and the anthropic principle, in Confrontation of cosmological theories with observational data, edited by M.S. Longair (Reidel, Dordrecht, 1974).Google Scholar
  6. 6.
    B.J. Carr, M. Rees, Nature 278, 605 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    H. Kragh, Arch. Hist. Exact Sci. 64, 721 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Weinberg, Phys. Rev. Lett. 59, 2607 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    L. Susskind, The anthropic landscape of string theory, in Universe or multiverse?, edited by B. Carr (Cambridge University Press, Cambridge, England, 2007).Google Scholar
  10. 10.
    M. Livio, D. Hollowell, A. Weiss, J.W. Truran, Nature 340, 281 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    H. Schlattl, A. Heger, H. Oberhummer, T. Rauscher, A. Csótó, Astrophys. Space Sci. 291, 27 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    S. Weinberg, Facing Up (Harvard University Press, Cambridge, Massachusetts, 2001).Google Scholar
  13. 13.
    H. Oberhummer, A. Csótó, H. Schlattl, Nucl. Phys. A 689, 269 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    H. Oberhummer, A. Csótó, H. Schlattl, Science 289, 88 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A 31, 105 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A 41, 125 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 104, 142501 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A 45, 335 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 106, 192501 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A 40, 199 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 109, 252501 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 110, 112502 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    H. Oberhummer, A. Csótó, H. Schlattl, arXiv:astro-ph/9908247.
  25. 25.
    S. Weinberg, Phys. Lett. B 251, 288 (1990).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    J.C. Berengut, E. Epelbaum, V.V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, J.R. Peláez, Phys. Rev. D 87, 085018 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    M. Procura, B.U. Musch, T. Wollenweber, T.R. Hemmert, W. Weise, Phys. Rev. D 73, 114510 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    M. Frink, U.-G. Meißner, I. Scheller, Eur. Phys. J. A 24, 395 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Alarcón, J. Martin Camalich, J.A. Oller, Phys. Rev. D 85, 051503 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    G. Colangelo, S. Dürr, Eur. Phys. J. C 33, 543 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984).MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    R. Baron, P. Boucaud, J. Carbonell, A. Deuzeman, V. Drach, F. Farchioni, V. Gimenez, G. Herdoiza et al., JHEP 06, 111 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    V. Bernard, U.-G. Meißner, Phys. Lett. B 639, 278 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986).ADSCrossRefGoogle Scholar
  38. 38.
    M. Lüscher, Nucl. Phys. B 354, 531 (1991).ADSCrossRefGoogle Scholar
  39. 39.
    D. Lee, Eur. Phys. J. A 35, 171 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    A. Nogga, private communication.Google Scholar
  41. 41.
    V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).ADSCrossRefGoogle Scholar
  42. 42.
    P. Büttiker, U.-G. Meißner, Nucl. Phys. A 668, 97 (2000).CrossRefGoogle Scholar
  43. 43.
    P.F. Bedaque, T. Luu, L. Platter, Phys. Rev. C 83, 045803 (2011).ADSCrossRefGoogle Scholar
  44. 44.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, Nucl. Phys. A 714, 535 (2003).ADSCrossRefzbMATHGoogle Scholar
  45. 45.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, arXiv:nucl-th/0208040.
  46. 46.
    S.R. Beane, M.J. Savage, Nucl. Phys. A 717, 91 (2003).ADSCrossRefGoogle Scholar
  47. 47.
    S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002).ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage, Phys. Rev. Lett. 97, 012001 (2006).ADSCrossRefGoogle Scholar
  49. 49.
    J.-W. Chen, T.-K. Lee, C.-P. Liu, Y.-S. Liu, Phys. Rev. C 86, 054001 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    J. Soto, J. Tarrus, Phys. Rev. C 85, 044001 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, C. Elster, Phys. Rev. C 65, 044001 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    E. Epelbaum, J. Gegelia, arXiv:1301.6134 [nucl-th].

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Evgeny Epelbaum
    • 1
    Email author
  • Hermann Krebs
    • 1
  • Timo A. Lähde
    • 2
  • Dean Lee
    • 3
  • Ulf-G. Meißner
    • 2
    • 4
    • 5
  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochumGermany
  2. 2.Institut für Kernphysik, Institute for Advanced SimulationForschungszentrum JülichJülichGermany
  3. 3.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  4. 4.JARA - High Performance ComputingForschungszentrum JülichJülichGermany
  5. 5.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations