Advertisement

Correction for hole trapping in AGATA detectors using pulse shape analysis

  • for the AGATA Collaboration
  • B. BruyneelEmail author
  • B. Birkenbach
  • J. Eberth
  • H. Hess
  • Gh. Pascovici
  • P. Reiter
  • A. Wiens
  • D. Bazzacco
  • E. Farnea
  • C. Michelagnoli
  • F. Recchia
Special Article - Tools for Experiment and Theory

Abstract

Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects.

Keywords

Trap Density Trapping Rate Electron Trapping Interaction Position Online Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.W. Raudorf, R.H. Pehl, Nucl. Instrum. Methods A 255, 538 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    Ortec manual, The Best Choice of High Purity Germanium (HPGe) Detector, http://www.ortec-online.com/library/index.aspx.
  3. 3.
    S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    J. Simpson, J. Nyberg, W. Korten (Editors), AGATA Technical Design Report (2008), https://www.agata.org/reports.
  5. 5.
    E. Farnea et al., Nucl. Instrum. Methods A 621, 331 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. Wiens et al., Nucl. Instrum. Methods A 618, 223 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    I.-Y. Lee, J. Simpson, Nucl. Phys. News 20, 23 (2010).CrossRefGoogle Scholar
  8. 8.
    I.-Y. Lee, M.A. Deleplanque, K. Vetter, Rep. Prog. Phys. 66, 1095 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    F. Recchia et al., Nucl. Instrum. Methods A 604, 555 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    M. Eschenauer et al., Nucl. Instrum. Methods A 340, 364 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    W.C.G. Ho et al., Nucl. Instrum. Methods A 412, 507 (1998).CrossRefGoogle Scholar
  12. 12.
    M. Descovich et al., Nucl. Instrum. Methods A 545, 199 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    L. Reggiani, V. Mitin, Riv. Nuovo Cimento 12, (1989).Google Scholar
  14. 14.
    M. Lax, Phys. Rev. 119, 1502 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    L.S. Darken, Phys. Rev. Lett. 69, 2839 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    L.S. Darken et al., Nucl. Instrum. Methods 171, 49 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    T. Ross et al., Nucl. Instrum. Methods A 606, 533 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    V. Borrel et al., Nucl. Instrum. Methods A 430, 348 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    G.F. Knoll, Radiation detection and Measurement, 4th edition (Wiley & Sons).Google Scholar
  20. 20.
    W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (Springer Verlag, 2008).Google Scholar
  21. 21.
    A. Wiens et al., Eur. Phys. J. A 49, 47 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    A. Wiens, Doctoral thesis, University of Cologne (2011).Google Scholar
  23. 23.
    B. Bruyneel, AGATA Detector Library, in preparation.Google Scholar
  24. 24.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • for the AGATA Collaboration
  • B. Bruyneel
    • 1
    • 2
    Email author
  • B. Birkenbach
    • 2
  • J. Eberth
    • 2
  • H. Hess
    • 2
  • Gh. Pascovici
    • 2
  • P. Reiter
    • 2
  • A. Wiens
    • 2
  • D. Bazzacco
    • 3
  • E. Farnea
    • 3
  • C. Michelagnoli
    • 3
  • F. Recchia
    • 3
  1. 1.DSM/IRFU/SPhNCEA SaclayGif-sur-Yvette CedexFrance
  2. 2.Institut für KernphysikUniversität zu KölnKölnGermany
  3. 3.Sezione di PadovaINFNPadovaItaly

Personalised recommendations