Advertisement

Radiative capture reactions with heavy beams: extending the capabilities of DRAGON

  • Anna SimonEmail author
  • Jennifer Fallis
  • Artemis Spyrou
  • Alison M. Laird
  • Chris Ruiz
  • Lothar Buchmann
  • Brian R. Fulton
  • Dave Hutcheon
  • Lars Martin
  • Dave Ottewell
  • Alex Rojas
Special Article - Tools for Experiment and Theory

Abstract

Understanding the nucleosynthesis of stable proton-rich nuclei requires knowledge of the cross sections for both proton and alpha capture reactions. As some of the nucleosynthesis paths responsible for the production of these nuclei involve reactions on unstable isotopes, it is of particular importance to develop techniques to investigate these reactions. This requires radioactive beams and measurements in inverse kinematics, thus making recoil separators an ideal tool for direct measurements of proton and alpha capture reactions. Here, the application of the DRAGON recoil separator for measurements of capture reactions for heavy beams is presented. The performance of the separator was tested using the 58Ni(p,γ)59Cu reaction.

Keywords

Inverse Kinematic Radioactive Beam Resonance Strength Recoil Separator Unstable Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. van Wormer et al., Astrophys. J. 432, 326 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    M. Arnould, S. Goriely, Phys. Rep. 384, 1 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    A. Olin et al., Nucl. Phys. A 721, 1019c (2003).ADSCrossRefGoogle Scholar
  5. 5.
    C. Vockenhuber et al., Nucl. Instrum. Methods B 259, 688 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    C. Vockenhuber et al., Phys. Rev. C 76, 035801 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    C. Vockenhuber et al., Nucl. Instrum. Methods A 603, 372 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    D.A. Hutcheon et al., Nucl. Instrum. Methods A 498, 190 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    S. Engel et al., Nucl. Instrum. Methods A 553, 491 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    C. Vockenhuber et al., Nucl. Instrum. Methods B 266, 4167 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J.M. D’Auria et al., Phys. Rev. C 69, 065803 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    O.B. Tarasov, A.C.C. Villari, Nucl. Instrum. Methods B 266, 4670 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Carver, G.A. Jones, Nucl. Phys. 19, 184 (1960).CrossRefGoogle Scholar
  14. 14.
    C.I.W. Tingwell et al., Nucl. Phys. A 439, 371 (1984).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anna Simon
    • 1
    Email author
  • Jennifer Fallis
    • 3
  • Artemis Spyrou
    • 1
    • 2
  • Alison M. Laird
    • 4
  • Chris Ruiz
    • 3
  • Lothar Buchmann
    • 3
  • Brian R. Fulton
    • 4
  • Dave Hutcheon
    • 3
  • Lars Martin
    • 3
  • Dave Ottewell
    • 3
  • Alex Rojas
    • 3
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of Physics & AstronomyMichigan State UniversityEast LansingUSA
  3. 3.TRIUMFVancouverCanada
  4. 4.Department of PhysicsUniversity of YorkHeslington, YorkUK

Personalised recommendations