Advertisement

A possible NN*(1440) quasi-molecular state

  • Lu ZhaoEmail author
  • Peng-Nian Shen
  • Yin-Jie Zhang
  • Bing-Song Zou
Regular Article - Theoretical Physics

Abstract

Inspired by the recent observation of a narrow resonance-like structure around 2360 MeV in the pn 0 π 0 cross section, the possibility of forming a NN *(1440) quasi-molecular state is investigated by using a meson exchange model in which the π, σ, ρ and ω exchanges in t- and u-channels are considered. By adopting the coupling constants extracted from the relevant NN scattering and N *(1440) decay data, it is found that a deuteron-like quasi-molecular state of NN *(1440) with a binding energy in the range of 2 ∼ 67 MeV can be formed. Therefore, it is speculated that the observed structure around 2360 MeV might be or may have a large component of the NN *(1440) quasi-molecular state.

Keywords

Feynman Diagram Coupling Mode Partial Decay Width Tensor Potential Binding Energy Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.E. Booth, A. Abashian, K.M. Crowe, Phys. Rev. Lett. 7, 35 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    F. Plouin et al., Nucl. Phys. A. 302, 413 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    A. Abdivaliev et al., Nucl. Phys. B. 168, 385 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    J. Banaigs et al., Nucl. Phys. B. 105, 52 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    N. Willis et al., Phys. Lett. B. 406, 14 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    T. Risser, M.D. Shuster, Phys. Lett. B. 43, 68 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    C.A. Mosbacher, F. Osterfeld, nucl-th/9903064.Google Scholar
  8. 8.
    L. Alvarez-Ruso, E. Oset, E. Hernandez, Nucl. Phys. A. 633, 519 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    M. Bashkanov et al., Phys. Rev. Lett. 102, 052301 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987).CrossRefGoogle Scholar
  11. 11.
    C.A. Mosbacher, F. Osterfeld, Phys. Rev. C. 56, 2014 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    X. Liu, Y.R. Liu, W.Z. Deng, S.L. Zhu, Phys. Rev. D. 77, 034003 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    C.E. Thomas, F.E. Close, Phys. Rev. D. 78, 034007 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A. 868-869, 53 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Ouyang, J.J. Xie, B.S. Zou, H.S. Xu, Int. J. Mod. Phys. E. 18, 281 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D. 86, 010001 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    J.J. Sakurai, Phys. Rev. Lett. 17, 1021 (1966).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lu Zhao
    • 1
    • 2
    Email author
  • Peng-Nian Shen
    • 3
    • 1
    • 4
  • Yin-Jie Zhang
    • 5
    • 4
  • Bing-Song Zou
    • 6
    • 1
    • 2
    • 4
  1. 1.Institute of High Energy PhysicsCASBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of Physics and TechnologyGuangxi Normal UniversityGuilinChina
  4. 4.Theoretical Physics Center for Science FacilitiesBeijingChina
  5. 5.Physics DepartmentHebei UniversityBaodingChina
  6. 6.State Key Laboratory of Theoretical PhysicsInstitute of Theoretical PhysicsBeijingChina

Personalised recommendations