Advertisement

Sub-barrier capture reactions with 16,18O and 40,48Ca beams

  • V. V. Sargsyan
  • G. G. AdamianEmail author
  • N. V. Antonenko
  • W. Scheid
  • H. Q. Zhang
Regular Article - Theoretical Physics

Abstract

Various sub-barrier capture reactions with 16,18O and 40,48Ca are treated within the quantum diffusion approach. The role of neutron transfer in these capture reactions is discussed. The quasielastic and capture barrier distributions are analyzed and compared with the recent experimental data.

Keywords

Excitation Function Capture Cross Section Coulomb Barrier Neutron Transfer Reaction 40Ca 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Montagnoli et al., Phys. Rev. C 85, 024607 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    C. Simenel, Eur. Phys. J. A 48, 152 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    C.A. Bertulani, EPJ Web Conf. 17, 15001 (2011).CrossRefGoogle Scholar
  4. 4.
    Z. Kohley et al., Phys. Rev. Lett. 107, 202701 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Liang, EPJ Web Conf. 17, 02002 (2011).CrossRefGoogle Scholar
  6. 6.
    F. Scarlassara et al., EPJ Web Conf. 17, 05002 (2011).CrossRefGoogle Scholar
  7. 7.
    H.M. Jia et al., Phys. Rev. C 86, 044621 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Kolata et al., Phys. Rev. C 85, 054603 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, Eur. Phys. J. A 45, 125 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Eur. Phys. J. A 47, 38 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Eur. Phys. J. A 48, 118 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Eur. Phys. J. A 49, 19 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 84, 064614 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 85, 024616 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 86, 014602 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    S. Ayik, B. Yilmaz, D. Lacroix, Phys. Rev. C 81, 034605 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    H. Hofmann, Phys. Rep. 284, 137 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    S. Ayik, B. Yilmaz, A. Gokalp, O. Yilmaz, N. Takigawa, Phys. Rev. C 71, 054611 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, Part. Nucl. 41, 175 (2010).CrossRefGoogle Scholar
  20. 20.
    G. Hupin, D. Lacroix, Phys. Rev. C 81, 014609 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    R.A. Broglia, C.H. Dasso, S. Landowne, A. Winther, Phys. Rev. C 27, 2433 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Broglia, C.H. Dasso, S. Landowne, G. Pollarolo, Phys. Lett. B 133, 34 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    S. Szilner et al., Phys. Rev. C 76, 024604 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    S. Szilner et al., Phys. Rev. C 84, 014325 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    L. Corradi et al., Phys. Rev. C 84, 034603 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    G.G. Adamian, A.K. Nasirov, N.V. Antonenko, R.V. Jolos, Phys. Part. Nucl. 25, 583 (1994).Google Scholar
  27. 27.
    K. Washiyama, D. Lacroix, S. Ayik, Phys. Rev. C 79, 024609 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    S. Ayik, K. Washiyama, D. Lacroix, Phys. Rev. C 79, 054606 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    S. Raman, C.W. Nestor, Jr, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, J. Phys. G 36, 015109 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, Nucl. Phys. A 821, 51 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    E.F. Aguilera, J.J. Kolata, R.J. Tighe, Phys. Rev. C 52, 3103 (1995).ADSCrossRefGoogle Scholar
  33. 33.
    M. Benjelloun, W. Galster, J. Vervier, Nucl. Phys. A 560, 715 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    P. Jacobs, Z. Fraenkel, G. Mamane, L. Tserruya, Phys. Lett. B 175, 271 (1986).ADSCrossRefGoogle Scholar
  35. 35.
    H. Timmers et al., Nucl. Phys. A 584, 190 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    E. Piasecki et al., Phys. Rev. C 85, 054608 (2012).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. V. Sargsyan
    • 1
    • 2
  • G. G. Adamian
    • 1
    Email author
  • N. V. Antonenko
    • 1
  • W. Scheid
    • 3
  • H. Q. Zhang
    • 4
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.International Center for Advanced StudiesYerevan State UniversityYerevanArmenia
  3. 3.Institut für Theoretische Physik der Justus-Liebig-UniversitätGiessenGermany
  4. 4.China Institute of Atomic EnergyBeijingChina

Personalised recommendations