Advertisement

New experimental limits on the α decays of lead isotopes

  • J. W. Beeman
  • F. Bellini
  • L. Cardani
  • N. Casali
  • S. Di Domizio
  • E. Fiorini
  • L. Gironi
  • S. S. Nagorny
  • S. Nisi
  • F. Orio
  • L. Pattavina
  • G. Pessina
  • G. Piperno
  • S. Pirro
  • E. Previtali
  • C. Rusconi
  • C. Tomei
  • M. Vignati
Regular Article - Experimental Physics

Abstract.

For the first time ancient Roman lead was used to grow a crystal of PbWO4 , and this crystal has subsequently been used as a cryogenic particle detector. The new device provides independent readout of heat and scintillation light and is able to discriminate between \( \beta/\gamma\) interactions and alpha interactions down to few keV. Stringent limits on the \( \alpha\) decays of the lead isotopes are presented. In particular a limit of \( T_{1/2}>1.4\cdot 10^{20}\) y at a 90% C.L. was evaluated for the \( \alpha\) decay of 204Pb to 200Hg .

Keywords

204Pb Lead Isotope Light Yield Light Detector 147Sm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. de Marcillac et al., Nature 422, 876 (2003)CrossRefADSGoogle Scholar
  2. 2.
    J. Beeman et al., Phys. Rev. Lett. 108, 062501 (2012)CrossRefADSGoogle Scholar
  3. 3.
    B. Buck et al., J. Phys. G 17, 1223 (1991)CrossRefADSGoogle Scholar
  4. 4.
    B. Buck et al., J. Phys. G 18, 143 (1992)CrossRefADSGoogle Scholar
  5. 5.
    D.N. Poenaru, M. Ivascu, J. Phys. 44, 791 (1984)Google Scholar
  6. 6.
    B.A. Brown, Phys. Rev. C 46, 811 (1992)CrossRefADSGoogle Scholar
  7. 7.
    B. Al-Bataina, J. Jaenecke, Phys. Rev. C 37, 1667 (1988)CrossRefADSGoogle Scholar
  8. 8.
    A.P. Dickin, Radiogenic Isotope Geology, 2nd edition (Cambridge University Press, Cambridge, 2005)Google Scholar
  9. 9.
    W. Riezler, G. Kauwn, Z. Naturforsch. A 13, 904 (1958)ADSGoogle Scholar
  10. 10.
    H. Faraggi, Ann. Phys. 6, 325 (1951)Google Scholar
  11. 11.
  12. 12.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)CrossRefADSGoogle Scholar
  13. 13.
    M. Berglund et al., Pure Appl. Chem., 83, 397 (2011)CrossRefGoogle Scholar
  14. 14.
    R.D. Macfarlane, T.P. Kohman, Phys. Rev. 121, 1758 (1961)CrossRefADSGoogle Scholar
  15. 15.
    F.A. Danevich et al. Nucl. Instrum. Methods A556 2592006CrossRefGoogle Scholar
  16. 16.
    K. Kossert et al., Appl. Rad. Isot. 67, 1702 (2009)CrossRefGoogle Scholar
  17. 17.
    C. Cozzini et al., Phys. Rev. C 70, 064606 (2004)CrossRefADSGoogle Scholar
  18. 18.
    M. Laubenstein et al., Appl. Rad. Isot. 61, 167 (2004)CrossRefGoogle Scholar
  19. 19.
    K. Bunzl, W. Kracke, Nucl. Instrum. Methods A 238, 191 (1985)CrossRefADSGoogle Scholar
  20. 20.
    A. Alessandrello et al., Nucl. Instrum. Methods B 142, 163 (1998)CrossRefADSGoogle Scholar
  21. 21.
    A.A. Annenkov, M.V. Korzhik, P. Lecoq Nucl. Instrum. Methods A49030(2002CrossRefADSGoogle Scholar
  22. 22.
    J.B. Birks, Proc. Phys. Soc. A 64, 874 (1951)CrossRefADSGoogle Scholar
  23. 23.
    E. Andreotti et al., Astropart. Phys. 34, 822 (2011)CrossRefADSGoogle Scholar
  24. 24.
    S. Pirro et al., Nucl. Instrum. Methods A 444, 331 (2000)CrossRefADSGoogle Scholar
  25. 25.
    C. Arnaboldi, G. Pessina, S. Pirro, Nucl. Instrum. Methods A 559, 826 (2006)CrossRefADSGoogle Scholar
  26. 26.
    E. Gatti, P.F. Manfredi, Riv. Nuovo Cimento 9, 1 (1986)MathSciNetGoogle Scholar
  27. 27.
    V. Radeka, N. Karlovac, Nucl. Instrum. Methods A 52, 86 (1967)CrossRefGoogle Scholar
  28. 28.
    G. Piperno, S. Pirro, V. Vignati, JINST 6, P10005 (2011)CrossRefADSGoogle Scholar
  29. 29.
    F. Alessandria et al., Astropart. Phys. 35, 839 (2012)CrossRefADSGoogle Scholar
  30. 30.
    V.I. Tretyak, Astropart. Phys. 33, 40 (2010)CrossRefADSGoogle Scholar
  31. 31.
    C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010)CrossRefADSGoogle Scholar
  32. 32.
    P. Lecoq, Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, 1st edition (Springer, Berlin, 2006)Google Scholar
  33. 33.
    M. Clemenza, C. Maiano, L. Pattavina, E. Previtali, Eur. Phys. J. C 71, 1805 (2011)CrossRefADSGoogle Scholar
  34. 34.
    G. Feldman, R. Cousins, Phys. Rev. D 57, 3873 (1998)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. W. Beeman
    • 1
  • F. Bellini
    • 2
    • 3
  • L. Cardani
    • 2
    • 3
  • N. Casali
    • 4
    • 5
  • S. Di Domizio
    • 6
  • E. Fiorini
    • 7
    • 8
  • L. Gironi
    • 7
    • 8
  • S. S. Nagorny
    • 5
    • 9
  • S. Nisi
    • 5
  • F. Orio
    • 3
  • L. Pattavina
    • 8
  • G. Pessina
    • 8
  • G. Piperno
    • 2
    • 3
  • S. Pirro
    • 8
  • E. Previtali
    • 7
    • 8
  • C. Rusconi
    • 8
  • C. Tomei
    • 3
  • M. Vignati
    • 3
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  3. 3.INFNSezione di RomaRomaItaly
  4. 4.Dipartimento di FisicaUniversità degli studi dell’AquilaL’AquilaItaly
  5. 5.INFNLaboratori Nazionali del Gran SassoL’AquilaItaly
  6. 6.INFNSezione di GenovaGenovaItaly
  7. 7.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  8. 8.INFNSezione di Milano BicoccaMilanoItaly
  9. 9.Institute for Nuclear ResearchMSPKyivUkraine

Personalised recommendations